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Neural networks for 2D computer vison tasks
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Image Source: KITTI Vision Benchmark and COCO Dataset



Can we learn to infer 3D from a 2D image?

Input Image Neural Network 3D Reconstruction



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




What is the optimal 3D Representation?

. Depth Voxel Grid Pointcloud

n

Input Image

Mesh Primitives Implicit Surface
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3D Representations

bl

Neural
Network

Input Image Voxels

Discretization of 3D shape into grid:

v Accurately captures the shape details

X Parametrization size proportional to reconstruction quality
X Unable to yield smooth reconstructions

X Do not convey semantic information



3D Representations

Neural
I t1I i
nput Image Network Pointcloud

Discretization of surface with 3D points:

v Accurately captures the shape details

X Lacks surface connectivity

X Fixed number of points

X Parametrization size proportional to reconstruction quality
X Unable to yield smooth reconstructions

X Do not convey semantic information



3D Representations

Neural Mesh

I t1I
fiput tmage Network

Discretization of surface into vertices and faces:
v Accurately captures the shape details

v Yields smooth reconstructions

X Requires class-specific template topology

X Parametrization size

X Do not convey semantic information



3D Representations

Neural

I t1I
fiput tmage Network

No discretization

v Accurately captures the shape details
v/ Low parametrization size

v Yields smooth reconstructions

X Requires post-processing

X Do not convey semantic information

Implicit
Surface
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3D Representations
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Neural

Network Primitives

Input Image

Discretization of 3D shape into parts:
v Low parametrization size

v Yields smooth reconstructions

v Yields semantic reconstructions

v Inter-object coherence

~ Accurately captures the shape details

11



Superquadrics Revisited:
Learning 3D Shape Parsing beyond Cuboids

Despoina Paschalidou, Ali Osman Ulusoy, Andreas Geiger
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3D Geometric Primitives

Primitive-based 3D Representations:

13



3D Geometric Primitives

Primitive-based 3D Representations:

o Parsimonious Description: Few primitives required to represent a 3D object
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3D Geometric Primitives

Primitive-based 3D Representations:
o Parsimonious Description: Few primitives required to represent a 3D object
o Convey semantic information (parts, functionality, etc.)

o Main Challenge: Variable number of primitives, little annotated datasets
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3D Shape Abstraction

Goal of this work:
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3D Shape Abstraction

Goal of this work:

o Learn 3D shape abstraction
from raw 3D point clouds /
meshes
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3D Shape Abstraction

Goal of this work:

o Learn 3D shape abstraction
from raw 3D point clouds /
meshes

o Infer variable number of
primitives

o No supervision at primitive
level

o Infer from point clouds or
images

14



1963: 3D Solids

R

Larry Roberts Input image 2x2 gradient operator
“Father of Computer Vision"

Lary Roberts: Machine Perception of Three-Dimensional Solids, PhD Thesis, MIT, 1963.

computed 3D model
rendered from new viewpoint

15



1986: Pentland’s Superquadrics

o 1 superquadric can be represented with 11 parameters

o Scene on the left contructed with 100 primitives required less than 1000 bytes!
o Early fitting-based approaches did not work robustly

Pentland: Parts: Structured descriptions of shape. AAAI, 1986. 16



2017: 3D Reconstructions with Volumetric Primitives

PRRSNILE RPN

o Unsupervised method for learning cuboidal primitives
o Variable number of primitives

o While cuboids are sufficient for capturing the structure of an object they do not
lead to expressive abstractions.

o Computational expensive reinforcement learning for learning the existence
probabilities

Tulsiani: Learning Shape Abstractions by Assembling Volumetric Primitives. CVPR, 2017. 17



Can we train a network to output superquadrics?

Everything in nature takes its form from the sphere, the cone and the cylinder. - Paul
Cezanne.

€1

"3 8 e e e
P06 @ @ e
i A XXX
T T T T
1 0.5 0.9

T
0.

1.3 1.7 €2

Superquadrics Space Shape

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 18



Superquadrics as geometric primitives
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Primitive-centric Coordinates

Their chief advantage is that they allow complex solids and surfaces to be constructed
and altered easily from a few interactive parameters. [Barr 1981]

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 19



Superquadrics as geometric primitives
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Primitive-centric Coordinates

Their chief advantage is that they allow complex solids and surfaces to be constructed
and altered easily from a few interactive parameters. [Barr 1981]

o Fully described with just 11 parameters

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 19



Superquadrics as geometric primitives
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Primitive-centric Coordinates

Their chief advantage is that they allow complex solids and surfaces to be constructed
and altered easily from a few interactive parameters. [Barr 1981]

o Fully described with just 11 parameters

o Represent a diverse class of shapes such as cylinders, spheres, cuboids, ellipsoids in a
single continuous parameter space

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 19



Superquadrics as geometric primitives
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Primitive-centric Coordinates

Their chief advantage is that they allow complex solids and surfaces to be constructed
and altered easily from a few interactive parameters. [Barr 1981]

o Fully described with just 11 parameters

o Represent a diverse class of shapes such as cylinders, spheres, cuboids, ellipsoids in a
single continuous parameter space

o Their large shape vocabulary allows for faster and smoother fitting than cuboids

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 19



Learning 3D Shape Parsing

@ o N Lo e Size
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Neural network encodes input image/shape and for each primitive predicts:
o 11 parameters: 6 pose (R,t) 4+ 3 scale () 4+ 2 shape (€)
o Probability of existence: v € [0, 1]

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 20



Loss Function

Overall Loss:
L(P,X) = Lpx(P,X) + Lx-p(X,P) + Ly (P)

Composed of:
o Lp_x(P,X): Primitive-to-Pointcloud Loss
o Lx_p(X,P): Pointcloud-to-Primitive Loss

o L~(P): Existence and Parsimony Loss

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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Overall Loss:
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Loss Function

Overall Loss:
L(P,X) = Lpx(P,X) + Lx-p(X,P) + Ly (P)

Composed of:
o Lp_x(P,X): Primitive-to-Pointcloud Loss
o Lx_p(X,P): Pointcloud-to-Primitive Loss

o L~(P): Existence and Parsimony Loss

Target and Predicted Shape:
o Target: X = {x}¥,
o Predicted: P = {(Am,vm)}M_,
o m-th primitive: Y, = {y;("}szl

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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Loss Function
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Target shape: X = {x},

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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Loss Function
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Target shape: X = {x},
m-th primitive: Y, = {y"}£_|

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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Primitive-to-Pointcloud Loss
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Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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Primitive-to-Pointcloud Loss

x

m=2

A3

Ty (z:)
L
CEAPX) = 23 AT
k=1

AP = min [ Tm(x) = ¥7l,

[IE)

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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Primitive-to-Pointcloud Loss

x

=2

A3

Ty (z:)

K
1
LB (P, X) = - > oAy Lpx(P,X) =Epz)

Al = min |[Tm(xi) = y¢ll;

M
=1,..,N Z

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.

T(xi)

Z EZ’_»((P, X)

m|zm=1

m LB, x(P, X)

23



Primitive-to-Pointcloud Loss
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Pointcloud-to-Primitive Loss
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Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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Pointcloud-to-Primitive Loss
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Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.



Pointcloud-to-Primitive Loss
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Existence and Parsimony Loss

M M
Ly(P) = max (1 — Z Ym 0) + B Z Ym
m=1 m=1

o First term: Enforces at least one primitive to exist
o Second term: Encourages parsimony

o Two-stage training
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Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019
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Comparison to Tulsiani et. al. / REINFORCE
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Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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Single view 3D Reconstruction on ShapeNet

£dwwh k2 NN
Ao e N X e
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Chamfer Distance Volumetric loU

Chairs  Aeroplanes  Animals  Chairs  Aeroplanes  Animals

Cuboids 0.0121 0.0153 0.0110 0.1288 0.0650 0.3339
Superquadrics  0.0006 0.0003 0.0003  0.1408 0.1808 0.7506

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 27



Single view 3D Reconstruction on SURREAL
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Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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3D Shape Abstractions with Superquadrics

Limitations:

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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3D Shape Abstractions with Superquadrics

Limitations:

o Trade-off between number of primitives and representation accuaracy

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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3D Shape Abstractions with Superquadrics

Limitations:
o Trade-off between number of primitives and representation accuaracy

o Two-stage training to get a variable number of primitives

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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3D Shape Abstractions with Superquadrics

Limitations:
o Trade-off between number of primitives and representation accuaracy
o Two-stage training to get a variable number of primitives

o Bidirectional reconstruction loss suffers from various local minima

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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3D Shape Abstractions with Superquadrics

Limitations:
o Trade-off between number of primitives and representation accuaracy
o Two-stage training to get a variable number of primitives
o Bidirectional reconstruction loss suffers from various local minima

o Superquadrics :-)

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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Learning Unsupervised Hierarchical Part Decomposition
of 3D Objects from a Single RGB Image

Despoina Paschalidou, Luc van Gool, Andreas Geiger

CVPR 2020
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Hierarchical Part Decomposition

Goal of this work:
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Hierarchical Part Decomposition
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Goal of this work:

o Model relationships between \
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Hierarchical Part Decomposition
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Hierarchical Part Decomposition

Goal of this work:

o Model relationships between
parts

o Model objects with multiple
levels of abstraction

o Infer variable number of
primitives
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Hierarchical Part Decomposition

Goal of this work:

o Model relationships between
parts

o Model objects with multiple
levels of abstraction

o Infer variable number of
primitives

o No supervision at primitive
level and part relations

Input Predicted Hierarchy

\

Prediction

Prediction

.
W oxx

31



Hierarchical Part Decomposition

Goal of this work:

o Model relationships between
parts

o Model objects with multiple
levels of abstraction

o Infer variable number of
primitives

o No supervision at primitive
level and part relations

o Improve reconstruction
quality while retaining
semanticness

Input

Predicted Hierarchy
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Prediction

Prediction

P
W e xx
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Supervised Structure-Aware Representations

1y
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[y
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o Large-scale dataset of 3D objects annotated with fine-grained, instance-level, and
hierarchical 3D part information

Mo: PartNet: A Large-scale Benchmark for Fine-grained and Hierarchical Part-level 3D Object Understanding, CVPR, 2019. 32



Supervised Structure-Aware Representations
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o Represent shapes using a symmetry hierarchy

o Learn a hierarchical organization of bounding boxes and then fills them with
voxelized parts.

Li: GRASS: Generative Recursive Autoencoders for Shape Structures, SIGGRAPH, 2017. 33



Supervised Structure-Aware Representations
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o Represent shapes as a hierarchy of n-ary graphs
o Requires supervision in terms of the primitive parameters and the hierarchies

Mo: StructureNet: Hierarchical Graph Networks for 3D Shape Generation, SIGGRAPH ASIA, 2019.




Representation with multiple levels of abstraction
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o Represent a 3D shape as a binary tree of primitives

o At each depth level, each node is recursively split into two until reaching the
maximum depth

o Reconstructions from deeper depth levels are more detailed

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 35



Representation with multiple levels of abstraction

o Represent a 3D shape as a binary tree of primitives

o At each depth level, each node is recursively split into two until reaching the
maximum depth

o Reconstructions from deeper depth levels are more detailed

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 35



Learning Hierarchical Part Decomposition of 3D Objects

f . D .

Image Neural Network

Target and Predicted Shape:

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 36



Learning Hierarchical Part Decomposition of 3D Objects

- e
Image Neural Network Predicted Tree of
Primitives

Target and Predicted Shape:

o Binary Tree of Primitives: P = {{p{ ii?)l | d={0...D}}

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Learning Hierarchical Part Decomposition of 3D Objects

- e
Predicted Tree of

Image Neural Network
Primitives

Target and Predicted Shape:
o Binary Tree of Primitives: P = {{p{ ii?)l | d={0...D}}

o Target: Set of occupancy pairs X = {(x;, 07)} ¥,

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Learning Hierarchical Part Decomposition of 3D Objects
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Image Neural Network Predicted Tree of Target
Primitives Object

Target and Predicted Shape:

o Binary Tree of Primitives: P = {{p{ ii?)l | d={0...D}}
o Target: Set of occupancy pairs X = {(x;, 07)} ¥,
o Occupancy function of predicted at depth d : G%(x) = max, ., ,d_; gd (x; 9)

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Learning Hierarchical Part Decomposition of 3D Objects

Input Image

Neural network encodes input image/shape and for each primitive predicts:

o 11 parameters: 6 pose (R,t) 4+ 3 scale (o) 4+ 2 shape (¢€)
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Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Learning Hierarchical Part Decomposition of 3D Objects
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Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Learning Hierarchical Part Decomposition of 3D Objects

Input Image

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 38



Learning Hierarchical Part Decomposition of 3D Objects
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Partition Network: Recursively partition the feature representation

d d+1 .d+1
po(cy) = ‘{"2;r vc2?<r+1}

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Learning Hierarchical Part Decomposition of 3D Objects

Geometry Network: Regress the primitive parameters

ro(cf) = {X{, af}-

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Learning Hierarchical Part Decomposition of 3D Objects

Sructure Networl)—» b

Structure Network: Assign object parts to primitives

H={{h}2 |d={0... D}

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Loss Function

Overall Loss:
E(P, H; X) = Estr(/H; X) + »Crec(P; X) + Ecomp(P§ X) + ‘Cprox(lp)

Composed of:

o Lstr(H,X): Structure Loss

o Lrec(P,X): Reconstruction Loss
o Lecomp(P,X): Combatibility Loss
o Lprox(P): Proximity Loss
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Loss Function

Overall Loss:

E(P, H; 'X) = Estr(/H; X) + »Crec(P; X) + »Ccomp(P§ X) + ‘Cprox(lp)

Composed of:

o

Target and Predicted Shape:

Lstr(H, X): Structure Loss
Lrec(P, X): Reconstruction Loss
Lcomp(P, X): Combatibility Loss
Lprox(P): Proximity Loss

o Target: X = {(x;,0)}",

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.

39



Loss Function

Overall Loss:
E(P, H; X) = Estr(/H; X) + »Crec(/P; X) + »Ccomp(P§ X) + ‘Cprox(P)

Composed of:

o

Lstr(H, X): Structure Loss
Lrec(P, X): Reconstruction Loss
Lcomp(P, X): Combatibility Loss
Lprox(P): Proximity Loss

Target and Predicted Shape:
o Target: X = {(x;,0)}Y,

o Binary Tree of Primitives: P = {{pi’}fd:z)l | d={0...D}}
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Loss Function

Overall Loss:
E(P, H; X) = Estr(H; X) + Lrec(P; X) + »Ccomp(P§ X) + ‘Cprox(lp)

Composed of:

o

Lstr(H, X): Structure Loss
Lrec(P, X): Reconstruction Loss
Lcomp(P, X): Combatibility Loss
Lprox(P): Proximity Loss

Target and Predicted Shape:
o Target: X = {(x;,0)}Y,

o Binary Tree of Primitives: P = {{pk}2 1l d={0...D}}

o Geometric Centroids: 7 = {{hd}2 tld={0...D}}

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Structure Loss
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Structure Loss
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Structure Loss
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Structure Loss
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Reconstruction Loss

D D 29-1

Lrc(P;X)= Y L(Gd(x),o)+ DD L(gz (x;xg),o)

(x,0)€X d= d=0 k=0 (x,o)GXf

Object Reconstruction Part Reconstruction
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Reconstruction Loss

D D 29-1

Lrc(P;X)= Y L(Gd(x),o)+ DD L(gg (x;xg),o)

(x,0)€X d= d=0 k=0 (x,o)GXf

Object Reconstruction Part Reconstruction
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Reconstruction Loss

D D 29-1
LuPiX)= 3 S 1(60.0)+ S5 S r(al(x).0)
(x,0)€X d=0 d=0 k=0 (x o)cx?
Object Reconstruction Part Reconstruction

x P
depth 0 K .
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Reconstruction Loss

D D 29-1
P = X S L(C00) ¢ > Y 1( (1) o)
(x,0)€X d=0 d=0 k=0 (x o)cx?
Object Reconstruction Part Reconstruction

x P
depth 0 ﬁ .
depth 1 ‘ E
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Reconstruction Loss

D D 29-1
LuPiX)= 3 S 1(60.0)+ S5 S r(al(x).0)
(x,0)€X d=0 d=0 k=0 (x o)cx?
Object Reconstruction Part Reconstruction

x P
depth 0 | K .
depth 1 K E
depth 2 ﬁ ,
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Reconstruction Loss

D D 29-1
LuPiX)= 3 S 1(60.0)+ S5 S r(al(x).0)
(x,0)€X d=0 d=0 k=0 (x o)cx?
Object Reconstruction Part Reconstruction

x P
deptno ]
depth 1 K E
apth2 ,
depthd4 " &
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Reconstruction Loss

291

ST i ).o)

d
(x,0) X

Lree(P; X) = ZZL(GC’ o)+ zD:

(x,0)€X d=0 d=0

Object Reconstruction Part Reconstruction

Xl opi
part 0 ? .
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Reconstruction Loss

291

ST i ).o)

d
(x,0) X

Lrec(P;X) = > ZL(G"(X o)+ zD:

(x,0)€X d=0 d=0

Object Reconstruction Part Reconstruction

Xl opi
part 0 { .

part 1 ; .
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Reconstruction Loss

D 29-1

ENCRED S WICE TS 3 i WIS

(x,0)€X d=0 d=0 k=0 (x,o)eXf

Object Reconstruction

Part Reconstruction
Xy
part 0 V % 7 .
part 1 7 ; .
part 2 % 0
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Reconstruction Loss

D 29-1

ENCRED S WICE TS 3 i WIS

(x,0)€X d=0 d=0 k=0 (x,o)EXf

Object Reconstruction Part Reconstruction

Xy
part 0 ? .
part 1 7 ; ‘
part 2 % 0

part 29-1
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Compatibility Loss

D 29-1

Leomp(P) = 3" 3 (4 — 1oU(e{, Xf))Q

d=0 k=0
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Proximity Loss

bt

(a) Input (b) without (c) Ours
D 29-1
Lorox(P) =32 57 60 — wd,
d=0 k=0
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Loss Function

Overall Loss:
E(P, H; X) = Estr(H; X) + »Crec(P§ X) + Ecomp(P§ X) + ‘Cprox(lp)

Composed of:
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Loss Function

Overall Loss:
E(P, H; X) == EStF(H; X) + Erec(’]); X) + Ecomp(P; X) + £prox(73)

Composed of:
o Lstr(H,X): Decomposes shape into parts
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Loss Function

Overall Loss:
[‘(P, H; X) = Estr(%; X) + £rec(73?, X) + Ecomp(P§ X) + ‘Cprox(P)

Composed of:

o Lstr(H,X): Decomposes shape into parts
o Lrec(P,X): Predicted primitives match the shape
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Loss Function

Overall Loss:
LP,H; X) = Lstr(H; X) + Lrec(P; X) + Lcomp(P: X) + Lprox(P)

Composed of:
o Lstr(H,X): Decomposes shape into parts
o Lrec(P,X): Predicted primitives match the shape

o Lecomp(P,X): Allows for variable number of primitives

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Loss Function

Overall Loss:
E(P, H; X) = Estr(/H; X) + »Crec(P; X) + Ecomp(P§ X) + ﬁprox(P)

Composed of:

o

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.

Lstr(H,X): Decomposes shape into parts
Lrec(P, X): Predicted primitives match the shape
Lcomp(P, X): Allows for variable number of primitives

Lprox(P): Prevents vanishing gradients
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Single-view 3D Reconstruction on ShapeNet

Input

"%%Xsﬂr

SQs [Paschalidou et. al.]

?hu v ey

Structure-aware predlctlons (Ours)
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Single-view 3D Reconstruction on ShapeNet

0.65 0.30

0.58 0.245

_ 0609 0511 0.567 0.25 1

0.20

Mean ToU (higher is better
Mean Chamfer-L; (lower is better)

OccNet SQs SIF CvxNets  Ours OceNet SQs SIF CvxNets  Ours

iZ_2 TImplicit Shape Representantations EEE Primitive-based Representations I Ours
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Single-view 3D Reconstruction on Dynamic FAUST

LANCN N B O

(a) Input (6) $Qs (¢) Ours. (d) Input (¢) SQs (D) Ours

1’\/<J AN //#\\ 7\ 4< A W/\"A AN A

) Predicted Hierarchy (h) Predicted Hierarchy

A

LR
Kim «<< X ATARA »?\

(0) Predicted Hierarchy (p) Predicted Hierarchy
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Learning Hierarchical Part Decomposition of 3D Objects

Limitations:
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Learning Hierarchical Part Decomposition of 3D Objects

Limitations:

o Part decomposition does not guarantee semantic parts
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Learning Hierarchical Part Decomposition of 3D Objects

Limitations:
o Part decomposition does not guarantee semantic parts

o Fixed maximum tree depth
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Learning Hierarchical Part Decomposition of 3D Objects

Limitations:
o Part decomposition does not guarantee semantic parts
o Fixed maximum tree depth

o Occupancy loss (loU) focuses less on fine details
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Learning Hierarchical Part Decomposition of 3D Objects

Limitations:
o Part decomposition does not guarantee semantic parts
o Fixed maximum tree depth
o Occupancy loss (loU) focuses less on fine details

o Superquadrics :-)
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What comes next?
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What comes next?

o Learning semantic parts

P> semanticness should not be enforced through geometry
P consistency across pose and instances

Image Source: Shapira 2008
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What comes next?

o Learning semantic parts

P> semanticness should not be enforced through geometry
P consistency across pose and instances

o Recovering higher level semantics

» predict object dynamics, skeletons, joints, etc.
» single RGB image is not sufficient
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What comes next?

o Learning semantic parts

» semanticness should not be enforced through geometry
P consistency across pose and instances

o Recovering higher level semantics

» predict object dynamics, skeletons, joints, etc.
» single RGB image is not sufficient

o More expressive primitives
» trade-off between parsimony and geometrically accurate reconstruction

4 30

rﬂi‘f I
T */,{\

Image Source: Shapira 2008 Image Source: Tierny 2007
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Thank you for your attention!

https://superquadrics.com/
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