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Neural networks for 2D computer vison tasks
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Can we learn to infer 3D from a 2D image?
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Input Image Neural Network 3D Reconstruction
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What is the optimal 3D Representation?

Input Image

Depth Voxel Grid Pointcloud

Mesh Primitives Implicit Surface
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3D Representations

Discretization of 3D shape into grid:
3 Accurately captures the shape details
7 Parametrization size proportional to reconstruction quality
7 Unable to yield smooth reconstructions
7 Do not convey semantic information
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3D Representations

Discretization of surface with 3D points:
3 Accurately captures the shape details
7 Lacks surface connectivity
7 Fixed number of points
7 Parametrization size proportional to reconstruction quality
7 Unable to yield smooth reconstructions
7 Do not convey semantic information
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3D Representations

Discretization of surface into vertices and faces:
3 Accurately captures the shape details
3 Yields smooth reconstructions
7 Requires class-specific template topology
7 Parametrization size
7 Do not convey semantic information
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3D Representations

No discretization
3 Accurately captures the shape details
3 Low parametrization size
3 Yields smooth reconstructions
7 Requires post-processing
7 Do not convey semantic information
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3D Representations

Discretization of 3D shape into parts:
3 Low parametrization size
3 Yields smooth reconstructions
3 Yields semantic reconstructions
3 Inter-object coherence
∼ Accurately captures the shape details
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3D Geometric Primitives

Primitive-based 3D Representations:

◦ Parsimonious Description: Few primitives required to represent a 3D object
◦ Convey semantic information (parts, functionality, etc.)
◦ Main Challenge: Variable number of primitives, little annotated datasets
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3D Shape Abstraction

Goal of this work:

◦ Learn 3D shape abstraction
from raw 3D point clouds /
meshes

◦ Infer variable number of
primitives

◦ No supervision at primitive
level

◦ Infer from point clouds or
images
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1963: 3D Solids

Lary Roberts: Machine Perception of Three-Dimensional Solids, PhD Thesis, MIT, 1963. 15



1986: Pentland’s Superquadrics

◦ 1 superquadric can be represented with 11 parameters
◦ Scene on the left contructed with 100 primitives required less than 1000 bytes!
◦ Early fitting-based approaches did not work robustly

Pentland: Parts: Structured descriptions of shape. AAAI, 1986. 16



2017: 3D Reconstructions with Volumetric Primitives

◦ Unsupervised method for learning cuboidal primitives
◦ Variable number of primitives
◦ While cuboids are sufficient for capturing the structure of an object they do not

lead to expressive abstractions.
◦ Computational expensive reinforcement learning for learning the existence

probabilities

Tulsiani: Learning Shape Abstractions by Assembling Volumetric Primitives. CVPR, 2017. 17



Can we train a network to output superquadrics?

Everything in nature takes its form from the sphere, the cone and the cylinder. - Paul
Cezanne.

Superquadrics Space Shape

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 18



Superquadrics as geometric primitives

Their chief advantage is that they allow complex solids and surfaces to be constructed
and altered easily from a few interactive parameters. [Barr 1981]

◦ Fully described with just 11 parameters
◦ Represent a diverse class of shapes such as cylinders, spheres, cuboids, ellipsoids in a

single continuous parameter space
◦ Their large shape vocabulary allows for faster and smoother fitting than cuboids

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 19
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Learning 3D Shape Parsing

Neural network encodes input image/shape and for each primitive predicts:
◦ 11 parameters: 6 pose (R, t) + 3 scale (α) + 2 shape (ϵ)
◦ Probability of existence: γ ∈ [0, 1]

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 20



Loss Function

Overall Loss:
L(P,X) = LP→X(P,X) + LX→P(X,P) + Lγ(P)

Composed of:
◦ LP→X(P,X): Primitive-to-Pointcloud Loss
◦ LX→P(X,P): Pointcloud-to-Primitive Loss
◦ Lγ(P): Existence and Parsimony Loss

◦ Target: X = {xi}N
i=1

◦ Predicted: P = {(λm, γm)}M
m=1

◦ m-th primitive: Ym = {ym
k }K

k=1

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 21
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Loss Function

Target shape: X = {xi}N
i=1

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 22



Loss Function

Target shape: X = {xi}N
i=1

m-th primitive: Ym = {ym
k }K

k=1

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 22



Primitive-to-Pointcloud Loss

Lm
P→X(P,X) =

1

K

K∑
k=1

∆m
k

∆m
k = min

i=1,..,N
∥Tm(xi)− ym

k ∥2

LP→X(P,X) = Ep(z)

 ∑
m|zm=1

Lm
P→X(P,X)


=

M∑
m=1

γm Lm
P→X(P,X)
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Pointcloud-to-Primitive Loss

Li
X→P(X,P) = min
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∆m
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Existence and Parsimony Loss

Lγ(P) = max
(
1−

M∑
m=1

γm, 0

)
+ β

√√√√ M∑
m=1

γm

◦ First term: Enforces at least one primitive to exist
◦ Second term: Encourages parsimony
◦ Two-stage training

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 25



Comparison to Tulsiani et. al. / REINFORCE
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Single view 3D Reconstruction on ShapeNet

Chamfer Distance Volumetric IoU
Chairs Aeroplanes Animals Chairs Aeroplanes Animals

Cuboids 0.0121 0.0153 0.0110 0.1288 0.0650 0.3339
Superquadrics 0.0006 0.0003 0.0003 0.1408 0.1808 0.7506

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 27



Single view 3D Reconstruction on SURREAL

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 28



3D Shape Abstractions with Superquadrics

Limitations:

◦ Trade-off between number of primitives and representation accuaracy
◦ Two-stage training to get a variable number of primitives
◦ Bidirectional reconstruction loss suffers from various local minima
◦ Superquadrics :-)

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 29
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Learning Unsupervised Hierarchical Part Decomposition
of 3D Objects from a Single RGB Image

Despoina Paschalidou, Luc van Gool, Andreas Geiger
CVPR 2020
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Hierarchical Part Decomposition

Goal of this work:

◦ Model relationships between
parts

◦ Model objects with multiple
levels of abstraction

◦ Infer variable number of
primitives

◦ No supervision at primitive
level and part relations

◦ Improve reconstruction
quality while retaining
semanticness

31



Hierarchical Part Decomposition

Goal of this work:
◦ Model relationships between

parts

◦ Model objects with multiple
levels of abstraction

◦ Infer variable number of
primitives

◦ No supervision at primitive
level and part relations

◦ Improve reconstruction
quality while retaining
semanticness

31



Hierarchical Part Decomposition

Goal of this work:
◦ Model relationships between

parts
◦ Model objects with multiple

levels of abstraction

◦ Infer variable number of
primitives

◦ No supervision at primitive
level and part relations

◦ Improve reconstruction
quality while retaining
semanticness

31



Hierarchical Part Decomposition

Goal of this work:
◦ Model relationships between

parts
◦ Model objects with multiple

levels of abstraction
◦ Infer variable number of

primitives

◦ No supervision at primitive
level and part relations

◦ Improve reconstruction
quality while retaining
semanticness

31



Hierarchical Part Decomposition

Goal of this work:
◦ Model relationships between

parts
◦ Model objects with multiple

levels of abstraction
◦ Infer variable number of

primitives
◦ No supervision at primitive

level and part relations

◦ Improve reconstruction
quality while retaining
semanticness

31



Hierarchical Part Decomposition

Goal of this work:
◦ Model relationships between

parts
◦ Model objects with multiple

levels of abstraction
◦ Infer variable number of

primitives
◦ No supervision at primitive

level and part relations
◦ Improve reconstruction

quality while retaining
semanticness

31



Supervised Structure-Aware Representations

◦ Large-scale dataset of 3D objects annotated with fine-grained, instance-level, and
hierarchical 3D part information

Mo: PartNet: A Large-scale Benchmark for Fine-grained and Hierarchical Part-level 3D Object Understanding, CVPR, 2019. 32



Supervised Structure-Aware Representations

◦ Represent shapes using a symmetry hierarchy
◦ Learn a hierarchical organization of bounding boxes and then fills them with

voxelized parts.

Li: GRASS: Generative Recursive Autoencoders for Shape Structures, SIGGRAPH, 2017. 33



Supervised Structure-Aware Representations

◦ Represent shapes as a hierarchy of n-ary graphs
◦ Requires supervision in terms of the primitive parameters and the hierarchies

Mo: StructureNet: Hierarchical Graph Networks for 3D Shape Generation, SIGGRAPH ASIA, 2019. 34



Representation with multiple levels of abstraction

◦ Represent a 3D shape as a binary tree of primitives
◦ At each depth level, each node is recursively split into two until reaching the

maximum depth
◦ Reconstructions from deeper depth levels are more detailed

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 35
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Learning Hierarchical Part Decomposition of 3D Objects

Target and Predicted Shape:

◦ Binary Tree of Primitives: P = {{pd
k}

2d−1
k=0 | d = {0 . . .D}}

◦ Target: Set of occupancy pairs X = {(xi, oi)}N
i=1

◦ Occupancy function of predicted at depth d : Gd(x) = maxk∈0...2d−1
gd

k
(
x;λd

k
)

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 36
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Learning Hierarchical Part Decomposition of 3D Objects

Neural network encodes input image/shape and for each primitive predicts:
◦ 11 parameters: 6 pose (R, t) + 3 scale (α) + 2 shape (ϵ)
◦ Reconstruction quality: qd

k ∈ [0, 1]

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 37



Learning Hierarchical Part Decomposition of 3D Objects

Components:
◦ Feature Encoder
◦ Partition Network
◦ Geometry Network
◦ Structure Network

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 38



Learning Hierarchical Part Decomposition of 3D Objects

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 38



Learning Hierarchical Part Decomposition of 3D Objects

Partition Network: Recursively partition the feature representation

pθ(cd
k) = {cd+1

2k , cd+1
2k+1}

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 38



Learning Hierarchical Part Decomposition of 3D Objects

Geometry Network: Regress the primitive parameters

rθ(cd
k) = {λd

k, qd
k}.

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 38



Learning Hierarchical Part Decomposition of 3D Objects

Structure Network: Assign object parts to primitives

H = {{hd
k}

2d−1
k=0 | d = {0 . . .D}}

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 38



Loss Function

Overall Loss:
L(P,H;X ) = Lstr(H;X ) + Lrec(P;X ) + Lcomp(P;X ) + Lprox(P)

Composed of:
◦ Lstr(H,X ): Structure Loss
◦ Lrec(P,X ): Reconstruction Loss
◦ Lcomp(P,X ): Combatibility Loss
◦ Lprox(P): Proximity Loss

◦ Target: X = {(xi, oi)}N
i=1

◦ Binary Tree of Primitives: P = {{pd
k}

2d−1
k=0 | d = {0 . . .D}}

◦ Geometric Centroids: H = {{hd
k}

2d−1
k=0 | d = {0 . . .D}}
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Structure Loss

Lstr(H;X ) =
∑

hd
k∈H

1

2d − 1

∑
(x,o)∈X d

k

o ∥x − hd
k∥2
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Reconstruction Loss

Lrec(P;X ) =
∑

(x,o)∈X

D∑
d=0

L
(

Gd(x), o
)

︸ ︷︷ ︸
Object Reconstruction

+
D∑

d=0

2d−1∑
k=0

∑
(x,o)∈X d

k

L
(

gd
k

(
x;λd

k

)
, o
)

︸ ︷︷ ︸
Part Reconstruction
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Compatibility Loss

Lcomp(P) =

D∑
d=0

2d−1∑
k=0

(
qd

k − IoU(pd
k,X

d
k )
)2
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Proximity Loss

Lprox(P) =
D∑

d=0

2d−1∑
k=0

∥t(λd
k)− hd

k∥2
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Loss Function

Overall Loss:
L(P,H;X ) = Lstr(H;X ) + Lrec(P;X ) + Lcomp(P;X ) + Lprox(P)

Composed of:

◦ Lstr(H,X ): Decomposes shape into parts
◦ Lrec(P,X ): Predicted primitives match the shape
◦ Lcomp(P,X ): Allows for variable number of primitives
◦ Lprox(P): Prevents vanishing gradients
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Single-view 3D Reconstruction on ShapeNet
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Single-view 3D Reconstruction on ShapeNet

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 45



Single-view 3D Reconstruction on Dynamic FAUST
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Learning Hierarchical Part Decomposition of 3D Objects

Limitations:

◦ Part decomposition does not guarantee semantic parts
◦ Fixed maximum tree depth
◦ Occupancy loss (IoU) focuses less on fine details
◦ Superquadrics :-)
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What comes next?

◦ Learning semantic parts
▶ semanticness should not be enforced through geometry
▶ consistency across pose and instances

◦ Recovering higher level semantics
▶ predict object dynamics, skeletons, joints, etc.
▶ single RGB image is not sufficient

◦ More expressive primitives
▶ trade-off between parsimony and geometrically accurate reconstruction
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Thank you for your attention!

https://superquadrics.com/

49

https://superquadrics.com/

