Learning Deep Models with Primitive-based Representations

Despoina Paschalidou

Autonomous Vision Group, Max Planck Institute for Intelligent Systems Tübingen Computer Vision Lab, ETH Zürich

Max Planck Institute for Intelligent Systems Autonomous Vision Group

htpps://paschalidoud.github.io/talks/primitive-based-representations.pdf

Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids

Despoina Paschalidou, Ali Osman Ulusoy, Andreas Geiger CVPR 2019

https://superquadrics.com/learnable-superquadrics.html

Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image

Despoina Paschalidou, Luc van Gool, Andreas Geiger

CVPR 2020

https://superquadrics.com/hierarchical-primitives.html

Neural networks for 2D computer vison tasks

Image Source: KITTI Vision Benchmark and COCO Dataset

Can we learn to infer 3D from a 2D image?

Input Image

Neural Network

3D Reconstruction

What is the optimal 3D Representation?

Discretization of 3D shape into grid:

- ✓ Accurately captures the shape details
- X Parametrization size proportional to reconstruction quality
- X Unable to yield smooth reconstructions
- X Do not convey semantic information

Discretization of surface with 3D points:

- \checkmark Accurately captures the shape details
- X Lacks surface connectivity
- X Fixed number of points
- X Parametrization size proportional to reconstruction quality
- X Unable to yield smooth reconstructions
- X Do not convey semantic information

Discretization of surface into vertices and faces:

- ✓ Accurately captures the shape details
- Yields smooth reconstructions
- X Requires class-specific template topology
- X Parametrization size
- X Do not convey semantic information

No discretization

- ✓ Accurately captures the shape details
- ✓ Low parametrization size
- Yields smooth reconstructions
- X Requires post-processing
- X Do not convey semantic information

Input Image

Network

Primitives

Discretization of 3D shape into parts:

- ✓ Low parametrization size
- Yields smooth reconstructions
- Yields semantic reconstructions
- ✓ Inter-object coherence
- \sim Accurately captures the shape details

Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids Despoina Paschalidou, Ali Osman Ulusoy, Andreas Geiger CVPR 2019

https://superquadrics.com/learnable-superquadrics.html

Primitive-based 3D Representations:

Primitive-based 3D Representations:

• Parsimonious Description: Few primitives required to represent a 3D object

Primitive-based 3D Representations:

- Parsimonious Description: Few primitives required to represent a 3D object
- Convey semantic information (parts, functionality, etc.)

Primitive-based 3D Representations:

- Parsimonious Description: Few primitives required to represent a 3D object
- Convey semantic information (parts, functionality, etc.)
- o Main Challenge: Variable number of primitives, few annotated datasets

Goal of this work:

Goal of this work:

 Learn 3D shape abstraction from raw 3D point clouds or images

Goal of this work:

- Learn 3D shape abstraction from raw 3D point clouds or images
- Infer variable number of primitives

Goal of this work:

- Learn 3D shape abstraction from raw 3D point clouds or images
- Infer variable number of primitives
- No supervision at primitive level

1963: 3D Solids

Larry Roberts "Father of Computer Vision"

Input image

2x2 gradient operator

computed 3D model rendered from new viewpoint

1986: Pentland's Superquadrics

- $\circ~1$ superquadric can be represented with 11 parameters
- Scene on the left contructed with 100 primitives required less than 1000 bytes!
- Early fitting-based approaches did not work robustly

2017: 3D Reconstructions with Volumetric Primitives

- Unsupervised method for learning cuboidal primitives
- Variable number of primitives
- While cuboids are sufficient for capturing the structure of an object they do not lead to expressive abstractions.
- Computational expensive reinforcement learning for learning the existence probabilities

Can we train a network to output superquadrics?

Everything in nature takes its form from the sphere, the cone and the cylinder. - Paul Cezanne.

Superquadrics Space Shape

Their chief advantage is that they allow complex solids and surfaces to be constructed and altered easily from a few interactive parameters. [Barr 1981]

Their chief advantage is that they allow complex solids and surfaces to be constructed and altered easily from a few interactive parameters. [Barr 1981]

• Fully described with just 11 parameters

Their chief advantage is that they allow complex solids and surfaces to be constructed and altered easily from a few interactive parameters. [Barr 1981]

- \circ $\,$ Fully described with just 11 parameters
- Represent a diverse class of shapes such as cylinders, spheres, cuboids, ellipsoids in a single continuous parameter space

Their chief advantage is that they allow complex solids and surfaces to be constructed and altered easily from a few interactive parameters. [Barr 1981]

- \circ $\,$ Fully described with just 11 parameters
- Represent a diverse class of shapes such as cylinders, spheres, cuboids, ellipsoids in a single continuous parameter space
- Their large shape vocabulary allows for faster and smoother fitting than cuboids

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.

Learning 3D Shape Parsing

Neural network encodes input image/shape and for each primitive predicts:

- \circ 11 parameters: 6 pose (**R**, **t**) + 3 scale (α) + 2 shape (ϵ)
- $\circ \quad \text{Probability of existence: } \gamma \in [0,1]$

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.

Loss Function

Overall Loss: $\mathcal{L}(\mathbf{P},\mathbf{X}) = \mathcal{L}_{P \rightarrow X}(\mathbf{P},\mathbf{X}) + \mathcal{L}_{X \rightarrow P}(\mathbf{X},\mathbf{P}) + \mathcal{L}_{\gamma}(\mathbf{P})$

Composed of:

- $\circ \ \mathcal{L}_{\textit{P} \rightarrow \textit{X}}(\mathbf{P}, \mathbf{X})$: Primitive-to-Pointcloud Loss
- $\circ \ \mathcal{L}_{X \rightarrow \mathit{P}}(\mathbf{X}, \mathbf{P})$: Pointcloud-to-Primitive Loss
- $\circ~\mathcal{L}_{\gamma}(\mathbf{P})$: Existence and Parsimony Loss

Loss Function

Overall Loss:

 $\mathcal{L}(\mathbf{P}, \mathbf{X}) = \mathcal{L}_{P \to X}(\mathbf{P}, \mathbf{X}) + \mathcal{L}_{X \to P}(\mathbf{X}, \mathbf{P}) + \mathcal{L}_{\gamma}(\mathbf{P})$

Composed of:

- $\circ \quad \mathcal{L}_{P \to X}(\mathbf{P}, \mathbf{X}): \text{ Primitive-to-Pointcloud Loss}$
- $\circ \ \mathcal{L}_{X \rightarrow \mathcal{P}}(\mathbf{X}, \mathbf{P})$: Pointcloud-to-Primitive Loss
- $\circ~\mathcal{L}_{\gamma}(\mathbf{P})$: Existence and Parsimony Loss

Target and Predicted Shape:

• Target: $\mathbf{X} = \{x_i\}_{i=1}^N$
Overall Loss:

 $\mathcal{L}(\mathbf{P}, \mathbf{X}) = \mathcal{L}_{\mathbf{P} \to \mathbf{X}}(\mathbf{P}, \mathbf{X}) + \mathcal{L}_{\mathbf{X} \to \mathbf{P}}(\mathbf{X}, \mathbf{P}) + \mathcal{L}_{\gamma}(\mathbf{P})$

Composed of:

- $\circ \ \mathcal{L}_{P \rightarrow X}(\mathbf{P}, \mathbf{X})$: Primitive-to-Pointcloud Loss
- $\circ \ \mathcal{L}_{X \to P}(\mathbf{X}, \mathbf{P}): \text{ Pointcloud-to-Primitive Loss}$
- $\mathcal{L}_{\gamma}(\mathbf{P})$: Existence and Parsimony Loss

- Target: $\mathbf{X} = \{x_i\}_{i=1}^N$
- **Predicted:** $\mathbf{P} = \{(\lambda_m, \gamma_m)\}_{m=1}^M$

Overall Loss:

 $\mathcal{L}(\mathbf{P}, \mathbf{X}) = \mathcal{L}_{P \to X}(\mathbf{P}, \mathbf{X}) + \mathcal{L}_{X \to P}(\mathbf{X}, \mathbf{P}) + \mathcal{L}_{\gamma}(\mathbf{P})$

Composed of:

- $\circ \ \mathcal{L}_{\textit{P} \rightarrow \textit{X}}(\mathbf{P}, \mathbf{X})$: Primitive-to-Pointcloud Loss
- $\circ \ \mathcal{L}_{X \rightarrow \mathit{P}}(\mathbf{X}, \mathbf{P})$: Pointcloud-to-Primitive Loss
- $\circ~\mathcal{L}_{\gamma}(\mathbf{P})$: Existence and Parsimony Loss

- Target: $\mathbf{X} = \{x_i\}_{i=1}^N$
- **Predicted:** $\mathbf{P} = \{(\lambda_m, \gamma_m)\}_{m=1}^M$
- **m-th primitive:** $\mathbf{Y}_m = \{y_k^m\}_{k=1}^K$

Target shape: $\mathbf{X} = \{x_i\}_{i=1}^N$

Target shape: $\mathbf{X} = \{x_i\}_{i=1}^{N}$ m-th primitive: $\mathbf{Y}_m = \{y_k^m\}_{k=1}^{K}$

Primitive-to-Pointcloud Loss

Primitive-to-Pointcloud Loss

Primitive-to-Pointcloud Loss

Pointcloud-to-Primitive Loss

$$\begin{aligned} \mathcal{L}_{X \to P}^{i}(\mathbf{X}, \mathbf{P}) &= \min_{m \mid z_m = 1} \Delta_i^m \\ \Delta_i^m &= \min_{k = 1, \dots, K} \|\mathcal{T}_m(\mathbf{x}_i) - \mathbf{y}_k^m\|_2 \end{aligned}$$

Pointcloud-to-Primitive Loss

Pointcloud-to-Primitive Loss

Existence and Parsimony Loss

$$\mathcal{L}_{\gamma}(\mathbf{P}) = \max\left(1 - \sum_{m=1}^{M} \gamma_m, 0\right) + \beta_{\sqrt{\sum_{m=1}^{M} \gamma_m}}$$

- o First term: Enforces at least one primitive to exist
- Second term: Encourages parsimony
- Two-stage training

Comparison to Tulsiani et. al. / REINFORCE

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.

Single view 3D Reconstruction on ShapeNet

	Chamfer Distance			Volumetric IoU		
	Chairs	Aeroplanes	Animals	Chairs	Aeroplanes	Animals
Cuboids Superguadrics	0.0121 0.0006	0.0153 0.0003	0.0110 0.0003	0.1288 0.1408	0.0650 0.1808	0.3339 0.7506

Single view 3D Reconstruction on SURREAL

Limitations:

Limitations:

o Trade-off between number of primitives and representation accuracy

Limitations:

- o Trade-off between number of primitives and representation accuracy
- o Bidirectional reconstruction loss suffers from various local minima

Limitations:

- o Trade-off between number of primitives and representation accuracy
- o Bidirectional reconstruction loss suffers from various local minima
- Superquadrics :-)

Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image

Despoina Paschalidou, Luc van Gool, Andreas Geiger CVPR 2020

https://superquadrics.com/hierarchical-primitives.html

Goal of this work:

Representation with multiple levels of abstraction

- Represent a 3D shape as a binary tree of primitives
- $\circ\;$ At each depth level, each node is $\ensuremath{\textit{recursively}}$ split into two until reaching the maximum depth
- o Reconstructions from deeper depth levels are more detailed

• Binary Tree of Primitives:
$$\mathcal{P} = \{\{p_k^d\}_{k=0}^{2^d-1} \mid d = \{0 \dots D\}\}$$

- Binary Tree of Primitives: $\mathcal{P} = \{\{p_k^d\}_{k=0}^{2^d-1} \mid d = \{0 \dots D\}\}$
- **Target:** Set of occupancy pairs $\mathcal{X} = \{(\mathbf{x}_i, o_i)\}_{i=1}^N$

- Binary Tree of Primitives: $\mathcal{P} = \{\{p_k^d\}_{k=0}^{2^d-1} \mid d = \{0 \dots D\}\}$
- **Target:** Set of occupancy pairs $\mathcal{X} = \{(\mathbf{x}_i, o_i)\}_{i=1}^N$
- $\circ \quad \text{Occupancy function of predicted shape at depth d:} \\ G^d(\mathbf{x}) = \max_{k \in 0...2^d 1} g_k^d(\mathbf{x}; \lambda_k^d)$

Neural network encodes input image/shape and for each primitive predicts:

- $\circ~$ 11 parameters: 6 pose $({f R},t)$ + 3 scale (lpha) + 2 shape (ϵ)
- Reconstruction quality: $q_k^d \in [0, 1]$

Components:

- Feature Encoder
- Partition Network
- Geometry Network
- o Structure Network

Partition Network: Recursively partition the feature representation

$$p_{\theta}(\mathbf{c}_{k}^{d}) = \{\mathbf{c}_{2k}^{d+1}, \mathbf{c}_{2k+1}^{d+1}\}$$

Geometry Network: Regress the primitive parameters

$$r_{\theta}(\mathbf{c}_k^d) = \{\lambda_k^d, q_k^d\}.$$

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 40

Structure Network: Assign object parts to primitives

$$\mathcal{H} = \{\{\mathbf{h}_{k}^{d}\}_{k=0}^{2^{d}-1} \mid d = \{0 \dots D\}\}$$

$$\mathbf{h}_{0}^{1} \qquad \mathbf{h}_{1}^{1} \qquad \mathbf{h}_{2}^{2} \qquad \mathbf{h}_{1}^{3} \qquad \mathbf{h}_{0}^{2} \qquad \mathbf{h}_{1}^{3} \\ \mathbf{h}_{0}^{1} \qquad \mathbf{h}_{1}^{2} \qquad \mathbf{h}_{1}^{3} \qquad \mathbf{h}_{0}^{3} \qquad \mathbf{h}_{1}^{3} \\ \mathbf{h}_{0}^{2} \qquad \mathbf{h}_{1}^{3} \qquad \mathbf{h}_{0}^{3} \qquad \mathbf{h}_{1}^{3} \\ \mathbf{h}_{0}^{3} \qquad \mathbf{h}_{1}^{3} \qquad \mathbf{h}_{0}^{3} \qquad \mathbf{h}_{1}^{3} \\ \mathbf{h}_{0}^{3} \qquad \mathbf{h}_{1}^{3} \qquad \mathbf{h}_{0}^{3} \qquad \mathbf{h}_{0}$$

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 40

Overall Loss:

 $\mathcal{L}(\mathcal{P},\mathcal{H};\mathcal{X}) = \mathcal{L}_{\textit{str}}(\mathcal{H};\mathcal{X}) + \mathcal{L}_{\textit{rec}}(\mathcal{P};\mathcal{X}) + \mathcal{L}_{\textit{comp}}(\mathcal{P};\mathcal{X}) + \mathcal{L}_{\textit{prox}}(\mathcal{P})$

Composed of:

- $\circ \quad \mathcal{L}_{\textit{str}}(\mathcal{H},\mathcal{X}) \text{: Structure Loss}$
- $\circ \quad \mathcal{L}_{\textit{rec}}(\mathcal{P},\mathcal{X}): \text{ Reconstruction Loss}$
- $\circ \quad \mathcal{L}_{\textit{comp}}(\mathcal{P},\mathcal{X}): \text{ Combatibility Loss}$
- $\circ \quad \mathcal{L}_{\textit{prox}}(\mathcal{P}): \text{ Proximity Loss}$
Overall Loss:

 $\mathcal{L}(\mathcal{P}, \mathcal{H}; \boldsymbol{\mathcal{X}}) = \mathcal{L}_{\textit{str}}(\mathcal{H}; \boldsymbol{\mathcal{X}}) + \mathcal{L}_{\textit{rec}}(\mathcal{P}; \boldsymbol{\mathcal{X}}) + \mathcal{L}_{\textit{comp}}(\mathcal{P}; \boldsymbol{\mathcal{X}}) + \mathcal{L}_{\textit{prox}}(\mathcal{P})$

Composed of:

- $\circ \quad \mathcal{L}_{\textit{str}}(\mathcal{H}, \boldsymbol{\mathcal{X}}): \text{ Structure Loss}$
- $\mathcal{L}_{rec}(\mathcal{P}, \mathcal{X})$: Reconstruction Loss
- $\mathcal{L}_{comp}(\mathcal{P}, \mathcal{X})$: Combatibility Loss
- $\circ \quad \mathcal{L}_{\textit{prox}}(\mathcal{P}): \text{ Proximity Loss}$

Target and Predicted Shape:

• Target: $\mathcal{X} = \{(\mathbf{x}_i, o_i)\}_{i=1}^N$

Overall Loss:

 $\mathcal{L}(\mathcal{P}, \mathcal{H}; \mathcal{X}) = \mathcal{L}_{\textit{str}}(\mathcal{H}; \mathcal{X}) + \mathcal{L}_{\textit{rec}}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{\textit{comp}}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{\textit{prox}}(\mathcal{P})$

Composed of:

- $\circ \quad \mathcal{L}_{\textit{str}}(\mathcal{H},\mathcal{X}) \text{: Structure Loss}$
- $\mathcal{L}_{rec}(\mathcal{P}, \mathcal{X})$: Reconstruction Loss
- $\mathcal{L}_{comp}(\mathcal{P}, \mathcal{X})$: Combatibility Loss
- $\mathcal{L}_{prox}(\mathcal{P})$: Proximity Loss

Target and Predicted Shape:

- Target: $\mathcal{X} = \{(\mathbf{x}_i, o_i)\}_{i=1}^N$
- Binary Tree of Primitives: $\mathcal{P} = \{\{p_k^d\}_{k=0}^{2^d-1} \mid d = \{0 \dots D\}\}$

Overall Loss:

 $\mathcal{L}(\mathcal{P}, \mathcal{H}; \mathcal{X}) = \mathcal{L}_{\textit{str}}(\mathcal{H}; \mathcal{X}) + \mathcal{L}_{\textit{rec}}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{\textit{comp}}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{\textit{prox}}(\mathcal{P})$

Composed of:

- $\circ \quad \mathcal{L}_{\textit{str}}(\mathcal{H},\mathcal{X}): \text{ Structure Loss}$
- $\circ \quad \mathcal{L}_{\textit{rec}}(\mathcal{P},\mathcal{X}): \text{ Reconstruction Loss}$
- $\circ \quad \mathcal{L}_{\textit{comp}}(\mathcal{P},\mathcal{X}): \text{ Combatibility Loss}$
- $\circ \quad \mathcal{L}_{\textit{prox}}(\mathcal{P}): \text{ Proximity Loss}$

Target and Predicted Shape:

- Target: $\mathcal{X} = \{(\mathbf{x}_i, o_i)\}_{i=1}^N$
- Binary Tree of Primitives: $\mathcal{P} = \{\{p_k^d\}_{k=0}^{2^d-1} \mid d = \{0 \dots D\}\}$
- Geometric Centroids: $\mathcal{H} = \{ \{\mathbf{h}_k^d\}_{k=0}^{2^d-1} \mid d = \{0 \dots D\} \}$

 \mathcal{X}_0^0

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 42

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 42

$$\mathcal{L}_{\textit{str}}(\mathcal{H}; \mathcal{X}) = \sum_{h_k^d \in \mathcal{H}} \frac{1}{2^d - 1} \sum_{(\mathbf{x}, o) \in \mathcal{X}_k^d} o \left\| \mathbf{x} - \mathbf{h}_k^d \right\|_2$$

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 42

 $\mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) = \underbrace{\sum_{(\mathbf{x}, o) \in \mathcal{X}} \sum_{d=0}^{D} L\left(G^{d}(\mathbf{x}), o\right)}_{\mathbf{x} \in \mathcal{X}, o \in \mathcal{X}, d=0} + \underbrace{\sum_{d=0}^{D} \sum_{k=0}^{2^{u}-1} \sum_{(\mathbf{x}, o) \in \mathcal{X}, k} L\left(g_{k}^{d}\left(\mathbf{x}; \lambda_{k}^{d}\right), o\right)}_{\mathbf{x} \in \mathcal{X}, o \in \mathcal{X}, d=0} + \underbrace{\sum_{k=0}^{D} \sum_{k=0}^{2^{u}-1} \sum_{(\mathbf{x}, o) \in \mathcal{X}, k} L\left(g_{k}^{d}\left(\mathbf{x}; \lambda_{k}^{d}\right), o\right)}_{\mathbf{x} \in \mathcal{X}, o \in \mathcal{X},$ Object Reconstruction

Part Reconstruction

$$\mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) = \underbrace{\sum_{(\mathbf{x}, o) \in \mathcal{X}} \sum_{d=0}^{D} L\left(G^{d}(\mathbf{x}), o\right)}_{\text{Object Reconstruction}} + \underbrace{C_{\mathbf{x}, o} = C_{\mathbf{x}, o} =$$

$$\sum_{d=0}^{D} \sum_{k=0}^{2^{d}-1} \sum_{\left(\mathbf{x}, o\right) \in \mathcal{X}_{k}^{d}} \boldsymbol{L}\left(\boldsymbol{g}_{k}^{d}\left(\mathbf{x}; \boldsymbol{\lambda}_{k}^{d}\right), o\right)$$

Part Reconstruction

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 43

Compatibility Loss

$$\mathcal{L}_{comp}(\mathcal{P}) = \sum_{d=0}^{\mathcal{D}} \sum_{k=0}^{2^d-1} \left(q_k^d - \text{loU}(\mathbf{p}_k^d, \mathcal{X}_k^d) \right)^2$$

Proximity Loss

$$\mathcal{L}_{\textit{prox}}(\mathcal{P}) = \sum_{d=0}^{D} \sum_{k=0}^{2^d-1} \|\mathbf{t}(\lambda_k^d) - \mathbf{h}_k^d\|_2$$

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 45

Overall Loss:

 $\mathcal{L}(\mathcal{P},\mathcal{H};\mathcal{X}) = \mathcal{L}_{\textit{str}}(\mathcal{H};\mathcal{X}) + \mathcal{L}_{\textit{rec}}(\mathcal{P};\mathcal{X}) + \mathcal{L}_{\textit{comp}}(\mathcal{P};\mathcal{X}) + \mathcal{L}_{\textit{prox}}(\mathcal{P})$

Overall Loss:

 $\mathcal{L}(\mathcal{P}, \mathcal{H}; \mathcal{X}) = \mathcal{L}_{\textit{str}}(\mathcal{H}; \mathcal{X}) + \mathcal{L}_{\textit{rec}}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{\textit{comp}}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{\textit{prox}}(\mathcal{P})$

Composed of:

 $\circ \ \mathcal{L}_{\textit{str}}(\mathcal{H},\mathcal{X})$: Decomposes shape into parts

Overall Loss:

 $\mathcal{L}(\mathcal{P}, \mathcal{H}; \mathcal{X}) = \mathcal{L}_{\textit{str}}(\mathcal{H}; \mathcal{X}) + \mathcal{L}_{\textit{rec}}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{\textit{comp}}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{\textit{prox}}(\mathcal{P})$

- $\circ \ \mathcal{L}_{\textit{str}}(\mathcal{H},\mathcal{X})$: Decomposes shape into parts
- $\circ~\mathcal{L}_{\textit{rec}}(\mathcal{P},\mathcal{X}){:}$ Predicted primitives match the shape

Overall Loss:

 $\mathcal{L}(\mathcal{P},\mathcal{H};\mathcal{X}) = \mathcal{L}_{\textit{str}}(\mathcal{H};\mathcal{X}) + \mathcal{L}_{\textit{rec}}(\mathcal{P};\mathcal{X}) + \frac{\mathcal{L}_{\textit{comp}}(\mathcal{P};\mathcal{X})}{\mathcal{L}} + \mathcal{L}_{\textit{prox}}(\mathcal{P})$

- $\circ \ \mathcal{L}_{\textit{str}}(\mathcal{H},\mathcal{X})$: Decomposes shape into parts
- $\circ~\mathcal{L}_{\textit{rec}}(\mathcal{P},\mathcal{X})$: Predicted primitives match the shape
- $\mathcal{L}_{comp}(\mathcal{P}, \mathcal{X})$: Allows for variable number of primitives

Overall Loss:

 $\mathcal{L}(\mathcal{P},\mathcal{H};\mathcal{X}) = \mathcal{L}_{\textit{str}}(\mathcal{H};\mathcal{X}) + \mathcal{L}_{\textit{rec}}(\mathcal{P};\mathcal{X}) + \mathcal{L}_{\textit{comp}}(\mathcal{P};\mathcal{X}) + \mathcal{L}_{\textit{prox}}(\mathcal{P})$

- $\circ \ \mathcal{L}_{\textit{str}}(\mathcal{H},\mathcal{X})$: Decomposes shape into parts
- $\circ~\mathcal{L}_{\textit{rec}}(\mathcal{P},\mathcal{X})$: Predicted primitives match the shape
- $\circ \ \ \, \mathcal{L}_{\textit{comp}}(\mathcal{P},\mathcal{X}):$ Allows for variable number of primitives
- $\circ \ \mathcal{L}_{\textit{prox}}(\mathcal{P})$: Prevents vanishing gradients

Expressive Shape Abstractions

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 47

Single-view 3D Reconstruction on ShapeNet

Single-view 3D Reconstruction on ShapeNet

Single-view 3D Reconstruction on Dynamic FAUST

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 49

Semantic Interpretation of Learned Hierarchy

Limitations:

• Part decomposition does not guarantee semantic parts

- Part decomposition does not guarantee semantic parts
- Fixed maximum tree depth

- Part decomposition does not guarantee semantic parts
- Fixed maximum tree depth
- Occupancy loss (IoU) focuses less on fine details

- Part decomposition does not guarantee semantic parts
- Fixed maximum tree depth
- Occupancy loss (IoU) focuses less on fine details
- Superquadrics :-)

What comes next?

What comes next?

- Learning semantic parts
 - semanticness should not be enforced through geometry
 - consistency across pose and instances

Image Source: Shapira 2008
What comes next?

- Learning semantic parts
 - semanticness should not be enforced through geometry
 - consistency across pose and instances
- o Recovering higher level semantics
 - predict object dynamics, skeletons, joints, etc.
 - single RGB image is not sufficient

What comes next?

- Learning semantic parts
 - semanticness should not be enforced through geometry
 - consistency across pose and instances
- o Recovering higher level semantics
 - predict object dynamics, skeletons, joints, etc.
 - single RGB image is not sufficient
- More expressive primitives
 - trade-off between parsimony and geometrically accurate reconstruction

Thank you for your attention!

https://superquadrics.com/