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An abstract painting of a planet ruled by little castles
Image Source:@RiversHaveWings on Twitter

A city scape at night
Image Source:@RiversHaveWings on Twitter
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Generative Models are Great!



Image Generated with NVIDIA’s Hyper-Realistic Face Generator StyleGAN
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Image Source: NVIDIA Drive Sim
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Image Source: Oculus
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Image Source: Promethean AI
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Generative Models are Great!
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Can we learn a generative model
for indoor scene synthesis that allows performing a number of interactive

scenarios with versatile user input?
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Existing scene synthesis methods
impose unnatural constraints on the scene generation process because they

represent scenes as ordered sequences of objects.

FastSynth, Ritchie et al. CVPR 2019 SceneFormer, Wang et al. ARXIV 2020
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Existing scene synthesis methods
impose unnatural constraints on the scene generation process because they

represent scenes as ordered sequences of objects.

FastSynth, Ritchie et al. CVPR 2019 SceneFormer, Wang et al. ARXIV 2020

We pose scene synthesis as an unordered set generation problem. 9



Scene Parametrization

A scene comprises an unordered set of M objects O = {oj}M
j=1 and its floor shape F.
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A scene comprises an unordered set of M objects O = {oj}M
j=1 and its floor shape F.

Each object oj = {cj, sj, rj, tj} is modelled with four random variables that describe their category, size, orientation
and location.

pθ(oj | o<j,F)︸ ︷︷ ︸
Probability of generating

j-th object

= pθ(cj|o<j,F)pθ(tj|cj, o<j,F)pθ(rj|cj, tj, o<j,F)pθ(sj|cj, tj, rj, o<j,F)
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where π(O) is a a permutation function that computes the set of permutations of all objects O in the scene.
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Ô∈π(O)

∏
j∈Ô
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Scene Parametrization

A scene comprises an unordered set of M objects O = {oj}M
j=1 and its floor shape F.

The likelihood of generating a scene with all orders is:

p̂θ(O|F)︸ ︷︷ ︸
Probability of generating O

with all orders

=
∏

Ô∈π(O)

∏
j∈Ô

pθ(oj | o<j,F)

︸ ︷︷ ︸
Probability of generating O

with order Ô

ATISS is trained to maximize the log-likelihood of all possible permutations of object arrangements in a collection
of scenes.
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Scene Parametrization

A scene comprises an unordered set of M objects O = {oj}M
j=1 and its floor shape F.

The log-likelihood of generating a scene with all orders is:

log p̂θ(O|F)︸ ︷︷ ︸
Log-likelihood of generating O

with all orders

=
∑

Ô∈π(O)

∑
j∈Ô

log pθ(oj | o<j,F)

︸ ︷︷ ︸
Probability of generating O

with order Ô

ATISS is trained to maximize the log-likelihood of all possible permutations of object arrangements in a collection
of scenes.
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Scene Generation

◦ Layout encoder: Computes a global feature representation for the floor.
◦ Structure encoder: Maps the j-th object to a per-object context embedding Cj.
◦ Transformer encoder: Takes F, {Cj}M

j=1, q and predicts the features q̂ of the next object to be added in the
scene.

◦ Attribute extractor: Predicts the object attributes of the next object.
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Training Overview

◦ Randomly permute the M objects of a scene.
◦ Randomly select the first T objects to compute the context embedding C.
◦ Conditioned on the C and F, ATISS predicts the attribute distributions of the next object.
◦ ATISS is trained to maximize the log likelihood of the T + 1 object from the permuted set of objects.
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How well does it work?



Scene Synthesis Results

The scenes were rendered using NVIDIA OMNIVERSE.
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Scene Synthesis Quantitative Results

FastSynth SceneFormer Ours
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Scene Synthesis Quantitative Results

Our model achieves a lower FID score for all room types. 16
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Scene Synthesis Quantitative Results

Our model achieves a classification accouracy closer to 0.5 for all room types. 16



Generalization Beyond Training Data

Scene Layout FastSynth SceneFormer Ours

The scenes were rendered using NVIDIA OMNIVERSE.
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Scene Completion Results

The scenes were rendered using NVIDIA OMNIVERSE.
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Scene Completion Results

Partial Scene FastSynth SceneFormer Ours+Order Ours

Since FastSynth, SceneFormer, and Ours+Order were trained with ordered sequences of
objects, they can only generate objects in the order they were trained with.
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Objects Suggestion Results

The scenes were rendered using NVIDIA OMNIVERSE. 20



Failure Cases Correction Results

The scenes were rendered using NVIDIA OMNIVERSE.
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Generation Time

FastSynth SceneFormer Ours
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◦ At least 100× faster than the CNN-based FastSynth for all room types.
◦ At least 4× faster than the Transformer-based SceneFormer for all room types.
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Generation Time
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Conclusions

◦ We propose ATISS a novel autoregressive model for unordered set generation.

◦ We demonstrate that our unordered set formulation opens up multiple interactive applications.
◦ ATISS has fewer parameters, is simpler to implement and train and runs up to 8x faster than existing

methods.
◦ Limitations:

▶ The autoregressive generation of attributes need to follow a specific ordering.
▶ Separate object retrieval module.
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Thank you!

https://nv-tlabs.github.io/ATISS
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https://nv-tlabs.github.io/ATISS

