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3D Geometric Primitives: Why do we care?

Primitive-based Representations:

◦ Parsimonious Description: Capture the 3D geometry using a small number of
primitives.

◦ Convey semantic information (parts, functionality, etc.)
◦ Main Challenges:

▶ Very few annotated datasets
▶ Variable number of parts
▶ What is really a semantic part?
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1986: Pentland’s Superquadrics

◦ 1 superquadric can be represented with 11 parameters
◦ Scene on the left contructed with 100 primitives required less than 1000 bytes!
◦ Early fitting-based approaches did not work robustly

Pentland: Parts: Structured descriptions of shape. AAAI, 1986. 4



Unsupervised Primitive-based Representations
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There exists a trade-off between the number of primitives and
the reconstruction quality in primitive-based representations.



Primitive Arena
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Simple parts require a large number of parts for accurate reconstructions.
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Neural Parts yield accurate and semantic reconstructions using an order of magnitude less
parts.
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Primitive-based Learning
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Homeomorphism

A homeomorphism is a continuous map between two topological spaces Y and X that
preserves all topological properties. In our setup, a homeomorphism ϕθ : R3 → R3 is

x = ϕθ(y) and y = ϕ−1
θ (x)

where x and y are 3D points in X and Y and ϕθ : Y → X, ϕ−1
θ : X → Y are continuous

bijections.
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System Overview

◦ Our supervision comes from a watertight mesh of the target object parametrized as
surface samples Xt and a set of occupancy pairs Xo.

◦ The feature extractor maps the input image into a per-primitive shape embedding.
◦ The conditional homeomorphism deforms a sphere into M primitives and vice-versa.
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Implicit and Explicit Representation of Predicted Shape

Implicit Representation:

G(x) = min
m∈0...M

gm(x)

gm(x) = ∥ϕ−1
θ (x;Cm)∥

2
− r, ∀ x ∈ R3
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Loss Functions

◦ Reconstruction Loss: The surface of the target and the predicted shape should
match.

◦ Normals Consistency Loss: The normals of the target and the predicted shape
should match.

◦ Occupancy Loss: The volume of the target and the predicted shape should match.
◦ Overlapping Loss: Prevent overlapping primitives.
◦ Coverage Loss: Prevent degenerate primitive arrangements.
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How well does it work?



Representation Power of Primitive-based Representations

Neural Parts decouple the reconstruction quality from the number of parts.
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Single-view 3D Reconstruction on D-FAUST
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Semantic Consistency
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Single-view 3D Reconstruction on FreiHAND
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Single-view 3D Reconstruction on ShapeNet
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Single-view 3D Reconstruction on ShapeNet
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Summary

◦ We propose Neural Parts, a novel 3D primitive representation as the
homeomorphic mapping between a sphere and the target shape.

◦ We demonstrate that implementing homeomorphims with an INN is better than
an MLP.

◦ Neural Parts have well defined explicit and implicit formulations.
◦ Neural Parts do not impose any constraint on the shape of the predicted primitive.
◦ Neural Parts allow to decouple the reconstruction quality from the number of

parts, thus they yield both geometrically accurate and semantically meaningful
shape abstractions.

◦ Limitations:

▶ High computational requirements due to the INN for the case of multiple
primitives (e.g. for scenes).

▶ Similar to all primitive-based representations, the reconstructed parts are
spatially consistent without necessarily being semantic.
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Thank you for your attention!

https://paschalidoud.github.io/neural_parts
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