Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks

Despoina Paschalidou

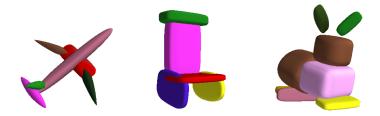
Autonomous Vision Group Max Planck Institute for Intelligent Systems Tübingen ETH Zürich

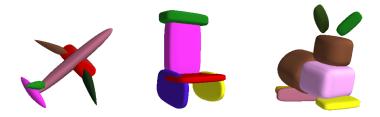
 $https://paschalidoud.github.io/neural_parts$

Joint work with

Angelos Katharopoulos

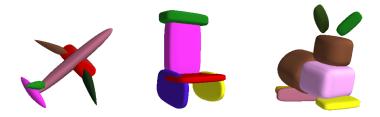
Sanja Fidler



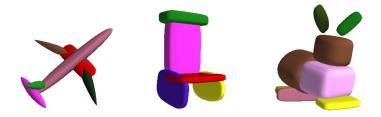


Primitive-based Representations:

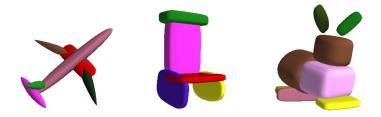
 Parsimonious Description: Capture the 3D geometry using a small number of primitives.



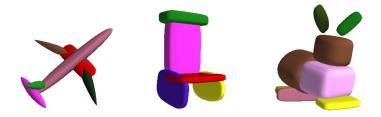
- Parsimonious Description: Capture the 3D geometry using a small number of primitives.
- Convey semantic information (parts, functionality, etc.)



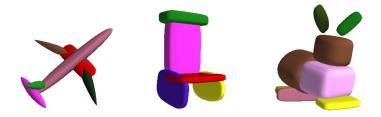
- Parsimonious Description: Capture the 3D geometry using a small number of primitives.
- Convey semantic information (parts, functionality, etc.)
- Main Challenges:



- Parsimonious Description: Capture the 3D geometry using a small number of primitives.
- Convey semantic information (parts, functionality, etc.)
- Main Challenges:
 - Very few annotated datasets

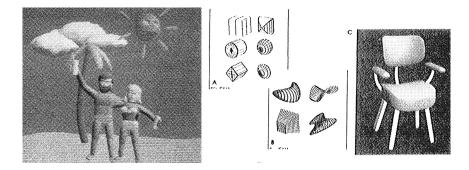


- Parsimonious Description: Capture the 3D geometry using a small number of primitives.
- Convey semantic information (parts, functionality, etc.)
- Main Challenges:
 - Very few annotated datasets
 - Variable number of parts



- Parsimonious Description: Capture the 3D geometry using a small number of primitives.
- Convey semantic information (parts, functionality, etc.)
- Main Challenges:
 - Very few annotated datasets
 - Variable number of parts
 - What is really a semantic part?

1986: Pentland's Superquadrics

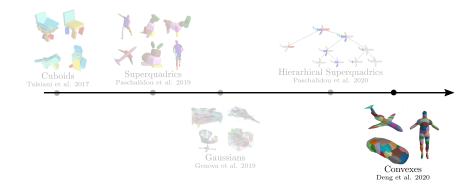


- $\circ~1$ superquadric can be represented with 11 parameters
- $\circ~$ Scene on the left contructed with 100 primitives required less than 1000 bytes!
- Early fitting-based approaches did not work robustly

Unsupervised Primitive-based Representations

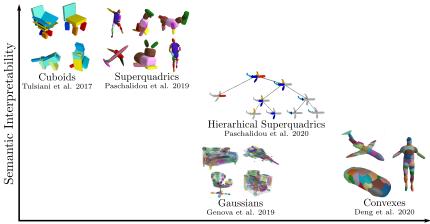
Unsupervised Primitive-based Representations

Unsupervised Primitive-based Representations



There exists a **trade-off** between the **number of primitives** and the **reconstruction quality** in primitive-based representations.

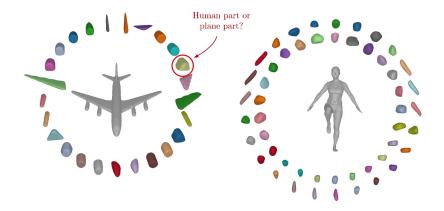
Primitive Arena



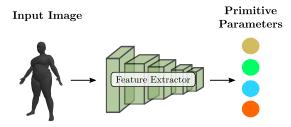
Reconstruction Accuracy

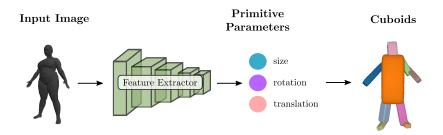
Simple parts require a large number of parts for accurate reconstructions.

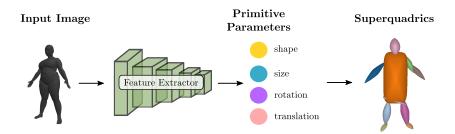
Simple parts require a large number of parts for accurate reconstructions.

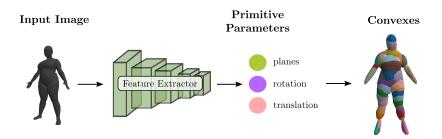


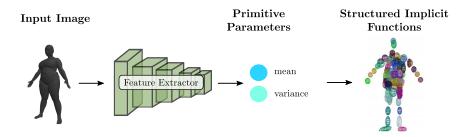
Neural Parts yield accurate and semantic reconstructions using an order of magnitude less parts.

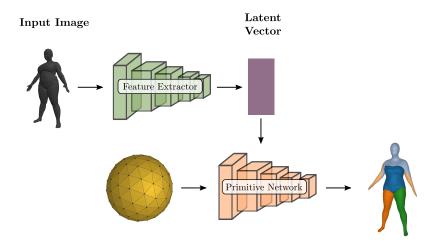












Homeomorphism

A homeomorphism is a continuous map between two topological spaces Y and X that preserves all topological properties. In our setup, a homeomorphism $\phi_{\theta} : \mathbb{R}^3 \to \mathbb{R}^3$ is

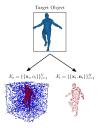
$$\mathbf{x} = \phi_{\boldsymbol{\theta}}(\mathbf{y})$$
 and $\mathbf{y} = \phi_{\boldsymbol{\theta}}^{-1}(\mathbf{x})$

where x and y are 3D points in X and Y and $\phi_{\theta} : Y \to X$, $\phi_{\theta}^{-1} : X \to Y$ are continuous bijections.

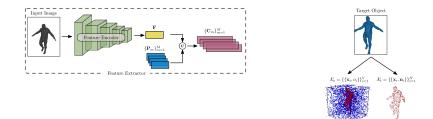
Input Image

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks, CVPR 2021

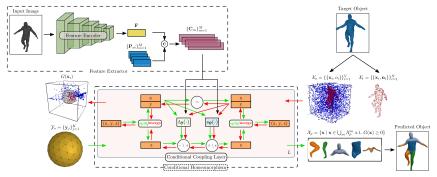
Input Image



• Our supervision comes from a watertight mesh of the target object parametrized as surface samples X_t and a set of occupancy pairs X_o .

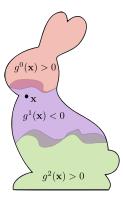


- Our supervision comes from a watertight mesh of the target object parametrized as surface samples X_t and a set of occupancy pairs X_o .
- The feature extractor maps the input image into a per-primitive shape embedding.



- Our supervision comes from a watertight mesh of the target object parametrized as surface samples X_t and a set of occupancy pairs X_o .
- The feature extractor maps the input image into a per-primitive shape embedding.
- \circ The conditional homeomorphism deforms a sphere into M primitives and vice-versa.

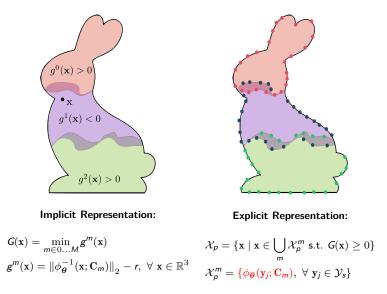
Implicit and Explicit Representation of Predicted Shape



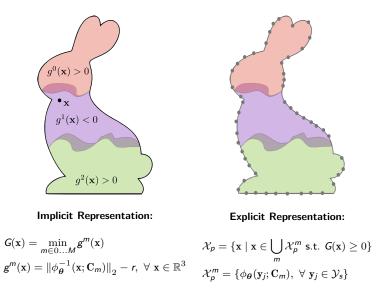
Implicit Representation:

$$\begin{split} & \boldsymbol{G}(\mathbf{x}) = \min_{\boldsymbol{m} \in 0...M} \boldsymbol{g}^{\boldsymbol{m}}(\mathbf{x}) \\ & \boldsymbol{g}^{\boldsymbol{m}}(\mathbf{x}) = \left\| \boldsymbol{\phi}_{\boldsymbol{\theta}}^{-1}(\mathbf{x};\mathbf{C}_{\boldsymbol{m}}) \right\|_{2} - \boldsymbol{r}, \; \forall \; \mathbf{x} \in \mathbb{R}^{3} \end{split}$$

Implicit and Explicit Representation of Predicted Shape

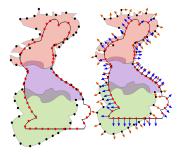


Implicit and Explicit Representation of Predicted Shape



Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks, CVPR 2021

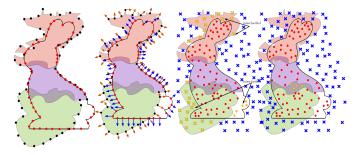
• **Reconstruction Loss**: The surface of the target and the predicted shape should match.



- Reconstruction Loss: The surface of the target and the predicted shape should match.
- $\circ~$ Normals Consistency Loss: The normals of the target and the predicted shape should match.

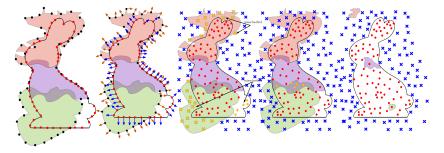


- Reconstruction Loss: The surface of the target and the predicted shape should match.
- Normals Consistency Loss: The normals of the target and the predicted shape should match.
- Occupancy Loss: The volume of the target and the predicted shape should match.



- Reconstruction Loss: The surface of the target and the predicted shape should match.
- $\circ~$ Normals Consistency Loss: The normals of the target and the predicted shape should match.
- **Occupancy Loss**: The volume of the target and the predicted shape should match.
- **Overlapping Loss**: Prevent overlapping primitives.

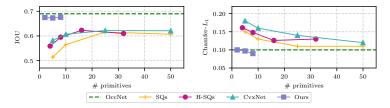
Loss Functions



- **Reconstruction Loss**: The surface of the target and the predicted shape should match.
- Normals Consistency Loss: The normals of the target and the predicted shape should match.
- **Occupancy Loss**: The volume of the target and the predicted shape should match.
- **Overlapping Loss**: Prevent overlapping primitives.
- Coverage Loss: Prevent degenerate primitive arrangements.

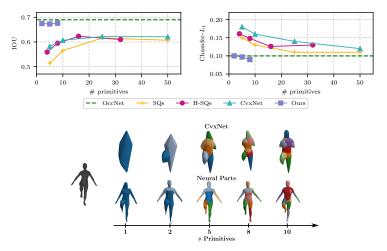
How well does it work?

Representation Power of Primitive-based Representations



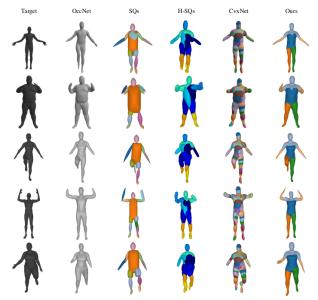
Neural Parts decouple the reconstruction quality from the number of parts.

Representation Power of Primitive-based Representations

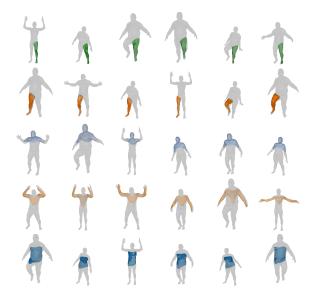


Neural Parts decouple the reconstruction quality from the number of parts.

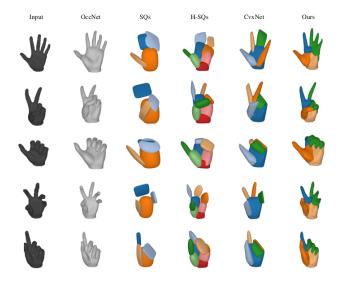
Single-view 3D Reconstruction on D-FAUST



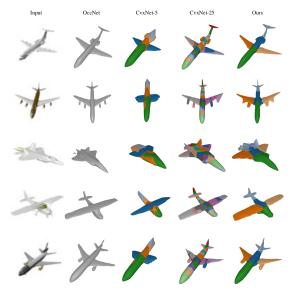
Semantic Consistency



Single-view 3D Reconstruction on FreiHAND



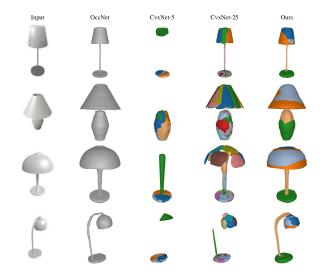
Single-view 3D Reconstruction on ShapeNet



Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks, CVPR 2021

Single-view 3D Reconstruction on ShapeNet

Single-view 3D Reconstruction on ShapeNet



• We propose Neural Parts, **a novel 3D primitive representation** as the homeomorphic mapping between a sphere and the target shape.

- We propose Neural Parts, **a novel 3D primitive representation** as the homeomorphic mapping between a sphere and the target shape.
- $\circ~$ We demonstrate that implementing homeomorphims with an INN is better than an MLP.
- Neural Parts have well defined explicit and implicit formulations.

- We propose Neural Parts, **a novel 3D primitive representation** as the homeomorphic mapping between a sphere and the target shape.
- $\circ~$ We demonstrate that implementing homeomorphims with an INN is better than an MLP.
- Neural Parts have well defined explicit and implicit formulations.
- Neural Parts do not impose any constraint on the shape of the predicted primitive.

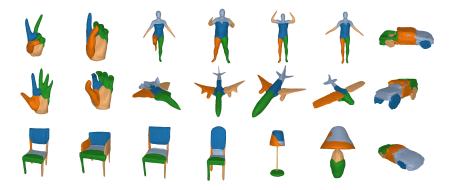
- We propose Neural Parts, **a novel 3D primitive representation** as the homeomorphic mapping between a sphere and the target shape.
- $\circ~$ We demonstrate that implementing homeomorphims with an INN is better than an MLP.
- Neural Parts have well defined explicit and implicit formulations.
- Neural Parts do not impose any constraint on the shape of the predicted primitive.
- Neural Parts allow to decouple the reconstruction quality from the number of parts, thus they yield both geometrically accurate and semantically meaningful shape abstractions.

- We propose Neural Parts, **a novel 3D primitive representation** as the homeomorphic mapping between a sphere and the target shape.
- $\circ~$ We demonstrate that implementing homeomorphims with an INN is better than an MLP.
- Neural Parts have well defined explicit and implicit formulations.
- Neural Parts do not impose any constraint on the shape of the predicted primitive.
- Neural Parts allow to decouple the reconstruction quality from the number of parts, thus they yield both geometrically accurate and semantically meaningful shape abstractions.
- Limitations:

- We propose Neural Parts, **a novel 3D primitive representation** as the homeomorphic mapping between a sphere and the target shape.
- $\circ~$ We demonstrate that implementing homeomorphims with an INN is better than an MLP.
- Neural Parts have well defined explicit and implicit formulations.
- Neural Parts do not impose any constraint on the shape of the predicted primitive.
- Neural Parts allow to decouple the reconstruction quality from the number of parts, thus they yield both geometrically accurate and semantically meaningful shape abstractions.
- Limitations:
 - High computational requirements due to the INN for the case of multiple primitives (e.g. for scenes).

- We propose Neural Parts, **a novel 3D primitive representation** as the homeomorphic mapping between a sphere and the target shape.
- $\circ~$ We demonstrate that implementing homeomorphims with an INN is better than an MLP.
- Neural Parts have well defined explicit and implicit formulations.
- Neural Parts do not impose any constraint on the shape of the predicted primitive.
- Neural Parts allow to decouple the reconstruction quality from the number of parts, thus they yield both geometrically accurate and semantically meaningful shape abstractions.
- Limitations:
 - High computational requirements due to the INN for the case of multiple primitives (e.g. for scenes).
 - Similar to all primitive-based representations, the reconstructed parts are spatially consistent without necessarily being semantic.

Thank you for your attention!



https://paschalidoud.github.io/neural_parts