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Can we learn to infer 3D from a 2D image?
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Taxonomy of 3D Representations

Input Image

Depth Voxel Grid Pointcloud

Mesh Primitives Implicit Surface
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Unsupervised Primitive-based Representations
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There exists a trade-off between the number of primitives and
the reconstruction quality in primitive-based representations.



Simple parts require a large number of parts for accurate reconstructions.
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Neural Parts yield accurate and semantic reconstructions using an order of
magnitude less parts.
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Primitive-based Learning
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Primitive-based Learning
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Homeomorphism

A homeomorphism is a continuous map between two topological spaces Y and X that
preserves all topological properties. In our setup, a homeomorphism ϕθ : R3 → R3 is

x = ϕθ(y) and y = ϕ−1
θ (x)

where x and y are 3D points in X and Y and ϕθ : Y → X, ϕ−1
θ : X → Y are continuous

bijections.
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preserves all topological properties. In our setup, a homeomorphism ϕθ : R3 → R3 is

x = ϕθ(y) and y = ϕ−1
θ (x)

where x and y are 3D points in X and Y and ϕθ : Y → X, ϕ−1
θ : X → Y are continuous

bijections.

For example, geometric object can be seen as topological space, and the homeomorphism
is a continuous stretching and bending of the object into a new shape.
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Parametrizing a Homeomorphism with an INN

A Real NVP models a bijective mapping by stacking a sequence of simple bijective
transformation functions that scale (sθ : R2 → R) and translate (tθ : R2 → R) a set of
points from one topological space to another.

xo = xi

yo = yi

zo = zi exp (sθ (xi, yi)) + tθ (xi, yi)
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transformation functions that scale (sθ : R2 → R) and translate (tθ : R2 → R) a set of
points from one topological space to another.

xo = xi

yo = yi

zo = zi exp (sθ (xi, yi)) + tθ (xi, yi)

The scale sθ(·) and the translation tθ(·) functions can be implemented with arbitrarily
complex networks.
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System Overview

◦ Our supervision comes from a watertight mesh of the target object parametrized as
surface samples Xt and a set of occupancy pairs Xo.

◦ The feature extractor maps the input image into a per-primitive shape embedding.
◦ The conditional homeomorphism deforms a sphere into M primitives and vice-versa.

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks, CVPR 2021 12



System Overview

◦ Our supervision comes from a watertight mesh of the target object parametrized as
surface samples Xt and a set of occupancy pairs Xo.

◦ The feature extractor maps the input image into a per-primitive shape embedding.
◦ The conditional homeomorphism deforms a sphere into M primitives and vice-versa.

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks, CVPR 2021 12



System Overview

◦ Our supervision comes from a watertight mesh of the target object parametrized as
surface samples Xt and a set of occupancy pairs Xo.

◦ The feature extractor maps the input image into a per-primitive shape embedding.
◦ The conditional homeomorphism deforms a sphere into M primitives and vice-versa.

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks, CVPR 2021 12



System Overview

◦ Our supervision comes from a watertight mesh of the target object parametrized as
surface samples Xt and a set of occupancy pairs Xo.

◦ The feature extractor maps the input image into a per-primitive shape embedding.

◦ The conditional homeomorphism deforms a sphere into M primitives and vice-versa.

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks, CVPR 2021 12



System Overview

◦ Our supervision comes from a watertight mesh of the target object parametrized as
surface samples Xt and a set of occupancy pairs Xo.

◦ The feature extractor maps the input image into a per-primitive shape embedding.
◦ The conditional homeomorphism deforms a sphere into M primitives and vice-versa.

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks, CVPR 2021 12



System Overview

◦ Our supervision comes from a watertight mesh of the target object parametrized as
surface samples Xt and a set of occupancy pairs Xo.

◦ The feature extractor maps the input image into a per-primitive shape embedding.
◦ The conditional homeomorphism deforms a sphere into M primitives and vice-versa.

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks, CVPR 2021 12



Conditional Homeomorphism

The original Real NVP cannot be directly applied in our setting as it does not consider a
shape embedding.

Original Coupling Layer

xo = xi

yo = yi

zo = zi exp (sθ (xi, yi)) + tθ (xi, yi)
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Conditional Homeomorphism

We introduce a conditional coupling layer that implements a bijective mapping
conditioned on the per-primitive shape embedding Cm.

Conditional Coupling Layer

xo = xi

yo = yi

zo = zi exp (sθ ([Cm; pθ (xi, yi)])) + tθ ([Cm; pθ (xi, yi)])
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What about learning?
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What about learning?

◦ Implicit Primitive Representation:

gm(x) = ∥ϕ−1
θ (x;Cm)∥

2
− r, ∀ x ∈ R3
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What about learning?

◦ Implicit Primitive Representation:

gm(x) = ∥ϕ−1
θ (x;Cm)∥

2
− r, ∀ x ∈ R3

◦ Explicit Primitive Representation:

Xm
p = {ϕθ(yj;Cm), ∀ yj ∈ Ys}
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Explicit Primitive Representation:

Xm
p = {ϕθ(yj;Cm), ∀ yj ∈ Ys}
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What about learning?

◦ Implicit Representation of predicted shape:

G(x) = min
m∈0...M

gm(x),

◦ Explicit Representation of predicted shape:

Xp = {x | x ∈
∪
m

Xm
p s.t. G(x) ≥ 0}
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Implicit and Explicit Representation of Predicted Shape

Implicit Representation:

G(x) = min
m∈0...M

gm(x),
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Loss Functions

Overall Loss:
L = Lrec(Xt,Xp) + Locc(Xo) + Lnorm(Xt) + Loverlap(Xo) + Lcover(Xo)

Composed of:
◦ Lrec(Xt,Xp) : Reconstruction Loss
◦ Locc(Xo): Occupancy Loss
◦ Lnorm(Xt): Normal Consistency Loss
◦ Loverlap(Xo): Overlapping Loss
◦ Lcover(Xo): Coverage Loss

◦ Target:

▶ Surface Samples: Xt = {{xi,ni}}N
i=1

▶ Volumetric Samples: Xo = {{xi, oi}}V
i=1

◦ Predicted: Xp = {x | x ∈
∪

m Xm
p s.t. G(x) ≥ 0}

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks, CVPR 2021 20



Loss Functions

Overall Loss:
L = Lrec(Xt,Xp) + Locc(Xo) + Lnorm(Xt) + Loverlap(Xo) + Lcover(Xo)

Composed of:
◦ Lrec(Xt,Xp) : Reconstruction Loss
◦ Locc(Xo): Occupancy Loss
◦ Lnorm(Xt): Normal Consistency Loss
◦ Loverlap(Xo): Overlapping Loss
◦ Lcover(Xo): Coverage Loss

Target and Predicted Shape:
◦ Target:

▶ Surface Samples: Xt = {{xi,ni}}N
i=1

▶ Volumetric Samples: Xo = {{xi, oi}}V
i=1

◦ Predicted: Xp = {x | x ∈
∪

m Xm
p s.t. G(x) ≥ 0}

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks, CVPR 2021 20



Loss Functions

Overall Loss:
L = Lrec(Xt,Xp) + Locc(Xo) + Lnorm(Xt) + Loverlap(Xo) + Lcover(Xo)

Composed of:
◦ Lrec(Xt,Xp) : Reconstruction Loss
◦ Locc(Xo): Occupancy Loss
◦ Lnorm(Xt): Normal Consistency Loss
◦ Loverlap(Xo): Overlapping Loss
◦ Lcover(Xo): Coverage Loss

Target and Predicted Shape:
◦ Target:

▶ Surface Samples: Xt = {{xi,ni}}N
i=1

▶ Volumetric Samples: Xo = {{xi, oi}}V
i=1

◦ Predicted: Xp = {x | x ∈
∪

m Xm
p s.t. G(x) ≥ 0}

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks, CVPR 2021 20



Loss Functions

Overall Loss:
L = Lrec(Xt,Xp) + Locc(Xo) + Lnorm(Xt) + Loverlap(Xo) + Lcover(Xo)

Composed of:
◦ Lrec(Xt,Xp) : Reconstruction Loss
◦ Locc(Xo): Occupancy Loss
◦ Lnorm(Xt): Normal Consistency Loss
◦ Loverlap(Xo): Overlapping Loss
◦ Lcover(Xo): Coverage Loss

Target and Predicted Shape:
◦ Target:

▶ Surface Samples: Xt = {{xi,ni}}N
i=1

▶ Volumetric Samples: Xo = {{xi, oi}}V
i=1

◦ Predicted: Xp = {x | x ∈
∪

m Xm
p s.t. G(x) ≥ 0}

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks, CVPR 2021 20



Reconstruction Loss

Target Surface Samples: Xt = {{xi,ni}}N
i=1
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Reconstruction Loss

Predicted Surface Samples: Xp = {x | x ∈
∪

m Xm
p s.t. G(x) ≥ 0}
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Reconstruction Loss

Lrec(Xt,Xp) =
1

|Xt|
∑

xi∈Xt

min
xj∈Xp

∥xi − xj∥22 +
1

|Xp|
∑

xj∈Xp

min
xi∈Xt

∥xi − xj∥22
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Occupancy Loss

Target Volumetric Samples: Xo = {{xi, oi}}V
i=1
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Occupancy Loss
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Occupancy Loss

Locc(Xo) =
∑

(x,o)∈Xo

Lce

 σ

(
−G(x)

τ

)
︸ ︷︷ ︸
> 1 when x

inside the predicted shape

, o



Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks, CVPR 2021 22



Normal Consistency Loss

Target Surface Samples: Xt = {{xi,ni}}N
i=1

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks, CVPR 2021 23



Normal Consistency Loss

Predicted Surface Normals: ∇xG(x)
∥∇xG(x)∥2
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Normal Consistency Loss

Lnorm(Xt) =
1

|Xt|
∑

(x,n)∈Xt

(
1−

⟨
∇xG(x)

∥∇xG(x)∥2
, n
⟩)
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Overlapping Loss

Target Volumetric Samples: Xo = {{xi, oi}}V
i=1
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Overlapping Loss
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Overlapping Loss

Loverlap(Xo) =
1

|Xo|
max

(
0,

M∑
m=1

σ

(
−gm(x)

τ

)
− λ

)
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Overlapping Loss

Loverlap(Xo) =
1

|Xo|
max

(
0,

M∑
m=1

σ

(
−gm(x)

τ

)
− λ

)
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Coverage Loss

Target Volumetric Samples: Xo = {{xi, oi}}V
i=1

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks, CVPR 2021 25



Coverage Loss

Lcover(Xo) =
M∑

m=1

∑
x∈Nm

k

max (0, gm(x))
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Loss Functions: Summary

◦ Reconstruction Loss: The surface of the target and the predicted shape should
match.

◦ Normals Consistency Loss: The normals of the target and the predicted shape
should match.

◦ Occupancy Loss: The volume of the target and the predicted shape should match.
◦ Overlapping Loss: Prevent overlapping primitives.
◦ Coverage Loss: Prevent degenerate primitive arrangements.
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Representation Power of Primitive-based Representations
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Single-view 3D Reconstruction on D-FAUST
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Single-view 3D Reconstruction on FreiHAND
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Single-view 3D Reconstruction on ShapeNet
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Single-view 3D Reconstruction on ShapeNet
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Single-view 3D Reconstruction on ShapeNet
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Semantic Consistency
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Do we really need an INN?

w/o ϕ−1
θ (x) AtlasNet - sphere Ours

IoU 0.639 ∗ 0.673
Chamfer-L1 0.119 0.087 0.097
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What comes next?

33



Primitive Arena

◦ What makes a good primitive-representation?
◦ We learn primitives by optimizing the geometry? Can’t we do better?
◦ Do we really learn semantic parts?
◦ Why do we need primitive-based representations?
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Learning semantic parts without part-level supervision

Image Source: Generalized Cylinder
Decomposition, 2015

Learning parts
through skeletonization

35



Learning semantic parts without part-level supervision

Image Source: Generalized Cylinder
Decomposition, 2015

Learning parts
through skeletonization

Image Source: Unsupervised Discovery of Parts,
Structure and Dynamics, 2019

Learning parts
from other cues (e.g. motion)

35



Learning semantic parts without part-level supervision

Image Source: Generalized Cylinder
Decomposition, 2015

Learning parts
through skeletonization

Image Source: Unsupervised Discovery of Parts,
Structure and Dynamics, 2019

Learning parts
from other cues (e.g. motion)

Image Source: Functionality Representations
and Applications for Shape Analysis, 2018

Image Source: Relationship Templates for
Creating Scene Variations, 2016

Image Source: Where2Act: From Pixels to
Actions for Articulated 3D Objects, 2021

Learning functional parts
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Generative model of parts for content creation

Image Source: Google Chimera
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Generative model of parts for content creation

Image Source: AttribIt: Content Creation with Semantic Attributes, 2013
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Reconstruction by combining parts

Image Source: ShapeAssembly: Learning to Generate Programs for 3D Shape Structure Synthesis, 2020

Image Source:Functional Map Networks for Analyzing and Exploring Large Shape Collections, 2013
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Thank you for your attention!
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