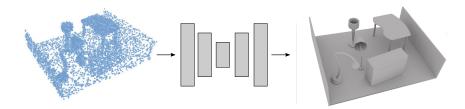
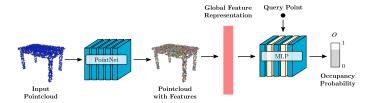
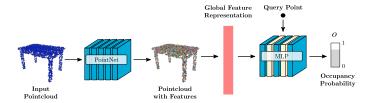

ALTO: Alternating Latent Topologies for Implicit 3D Reconstruction

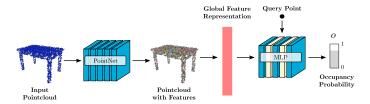

Zhen Wang^{1*} Shijie Zhou^{1*} Jeong Joon Park² Despoina Paschalidou² Suya You³ Gordon Wetzstein² Leonidas Guibas² Achuta Kadambi¹

 1 University of California, Los Angeles 2 Stanford University 3 DEVCOM Army Research Laboratory

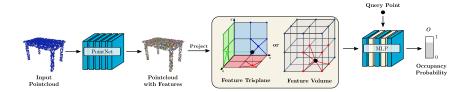

https://visual.ee.ucla.edu/alto.htm/

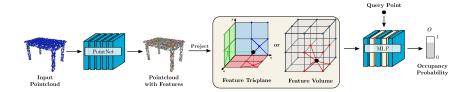


Problem Statement

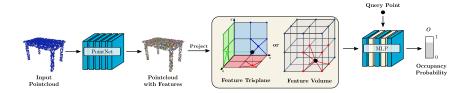

Can we recover 3D geometries of high fidelity given a (noisy) pointcloud as input?

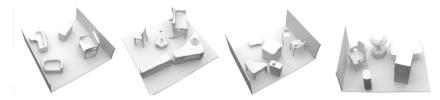
✓ Results in **continuous representations**


Mescheder: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019.

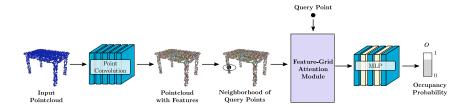


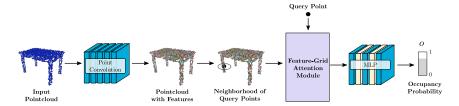
- $\checkmark~$ Results in continuous representations
- × The global latent code yields overly smooth geometries
- × Fully connected layers are not translation equivariant


Mescheder: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019.

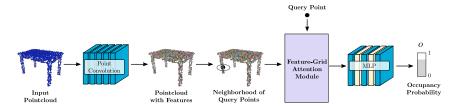

 $\checkmark\,$ Utilizing local features recovers more detailed geometries

Peng: Convolutional Occupancy Networks. ECCV, 2020.

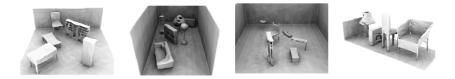


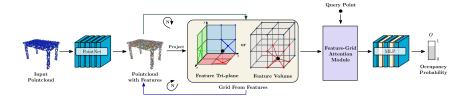

 $\checkmark\,$ Utilizing local features recovers more detailed geometries

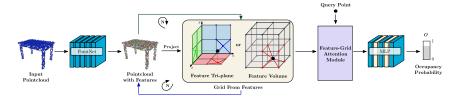
- × Latent vectors are uniformly distributed in space
- \times Struggles to capture fine-grained geometries around the surface boundaries



Peng: Convolutional Occupancy Networks. ECCV, 2020.

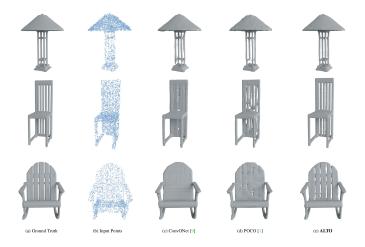



$\checkmark\,$ The latent vectors are concentrated around the surface boundaries

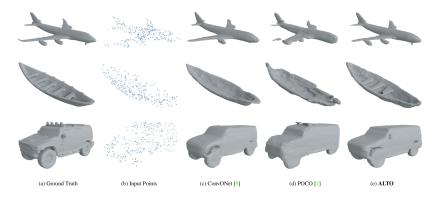


- $\checkmark\,$ The latent vectors are concentrated around the surface boundaries
- × Very slow inference time
- × Struggles to capture fine-grained geometries

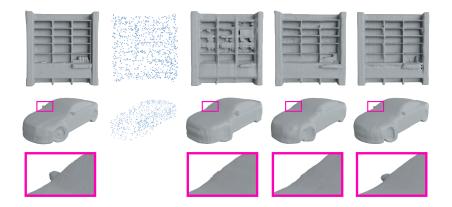
Boulch: POCO: Point Convolution for Surface Reconstruction. CVPR, 2022.



- $\checkmark\,$ Utilizing local features recovers more detailed geometries
- $\checkmark~$ Our model can reconstruct a 3D scene up to $10\times~\text{faster}$
- ✓ Can capture fine-grained geometries



Object-Level Reconstruction on ShapeNet


Object-level reconstructions using 3k points as input

Object-Level Reconstruction on ShapeNet

Object-level reconstructions using 300 points as input

Attention to Detail

Object-Level Reconstruction on ShapeNet

						UNIT I						
	2								9		0.	
5												
		Input poin	ts 3K			Input poin	s 1K			Input point	s 300	
Method	$\text{IoU}\uparrow$	$\text{Chamfer-}L_1\downarrow \downarrow$	NC↑	F-score↑	$\mathrm{IoU}\uparrow$	$\operatorname{Chamfer-} L_1 \downarrow$	$NC \uparrow$	F-score↑	$\text{IoU}\uparrow$	$\operatorname{Chamfer-} L_1 \downarrow$	$NC\uparrow$	F-score↑
ONet [41]	0.761 0.884	0.87 0.44	0.891 0.938	0.785 0.942	0.772 0.859	0.81 0.50	0.894 0.929	0.801 0.918	0.778 0.821	0.80 0.59	0.895 0.907	0.806 0.883
ConvONet [49] POCO [3]	0.884	0.44	0.938	0.942 0.984	0.859	0.30	0.929	0.918	0.821	0.61	0.892	0.885

Wang: ALTO: Alternating Latent Topologies for Implicit 3D Reconstruction, CVPR 2023

0.952

0.980

0.905

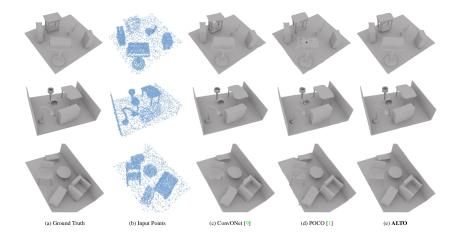
0.35

0.940

0.964

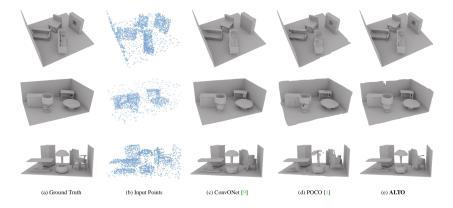
0.863

0.47

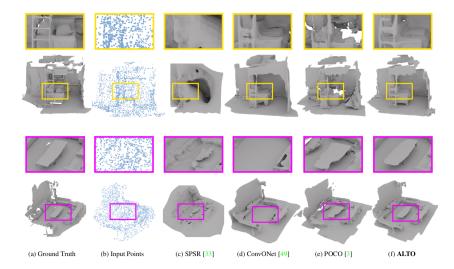

ALTO

0.930

0.30


0.924

0.922


Scene-level reconstructions using 10k points as input

Wang: ALTO: Alternating Latent Topologies for Implicit 3D Reconstruction, CVPR 2023

Scene-level reconstructions using 3k points as input

Generalization on ScanNet-v2

Wang: ALTO: Alternating Latent Topologies for Implicit 3D Reconstruction, CVPR 2023

Method	$\mathrm{IoU}\uparrow$	Chamfer- $L_1 \downarrow$	$\mathbf{NC}\uparrow$	F-score↑
ONet [41]	0.475	2.03	0.783	0.541
SPSR [33]	-	2.23	0.866	0.810
SPSR trimmed [33]	-	0.69	0.890	0.892
ConvONet [49]	0.849	0.42	0.915	0.964
DP-ConvONet [37]	0.800	0.42	0.912	0.960
POCO [3]	0.884	0.36	0.919	0.980
ALTO	0.914	0.35	0.921	0.981

Quantitative Evaluation on Synthetic Room Dataset using 10k points as input

Method	$\text{IoU}\uparrow$	Chamfer- $L_1 \downarrow$	$NC\uparrow$	F-score↑
ONet [41]	0.475	2.03	0.783	0.541
SPSR [33]	-	2.23	0.866	0.810
SPSR trimmed [33]	-	0.69	0.890	0.892
ConvONet [49]	0.849	0.42	0.915	0.964
DP-ConvONet [37]	0.800	0.42	0.912	0.960
POCO [3]	0.884	0.36	0.919	0.980
ALTO	0.914	0.35	0.921	0.981

	N _{Train} =10K, I	V _{Test} =3K	N _{Train} =N _{Test} =3K		
Method	Chamfer- $L_1 \downarrow$	F-score↑	Chamfer- $L_1 \downarrow$	F-score↑	
ConvONet [49]	1.01	0.719	1.16	0.669	
POCO [3]	0.93	0.737	1.15	0.667	
ALTO	0.87	0.746	0.92	0.726	

Generalization Capability on ScanNet

Quantitative Evaluation on Synthetic Room Dataset using 10k points as input

Method	$\text{IoU}\uparrow$	Chamfer- $L_1 \downarrow$	$NC\uparrow$	F-score↑
ONet [41]	0.475	2.03	0.783	0.541
SPSR [33]	-	2.23	0.866	0.810
SPSR trimmed [33]	-	0.69	0.890	0.892
ConvONet [49]	0.849	0.42	0.915	0.964
DP-ConvONet [37]	0.800	0.42	0.912	0.960
POCO [3]	0.884	0.36	0.919	0.980
ALTO	0.914	0.35	0.921	0.981

	N _{Train} =10K, I	V _{Test} =3K	N _{Train} =N _{Test} =3K		
Method	Chamfer- $L_1 \downarrow$	F-score↑	Chamfer- $L_1 \downarrow$	F-score↑	
ConvONet [49]	1.01	0.719	1.16	0.669	
POCO [3]	0.93	0.737	1.15	0.667	
ALTO	0.87	0.746	0.92	0.726	

Generalization Capability on ScanNet

Quantitative Evaluation on Synthetic Room Dataset using 10k points as input

Method	# Parameters	Inference time (s)
ConvONet [49]	4,166,657	1.6
POCO [3]	12,790,454	36.1
ALTO	4,787,905	3.6

Runtime Comparison

Thank you for your attention!