
PartNeRF: Generating Part-Aware Editable 3D Shapes
without 3D Supervision

Konstantinos Tertikas 1,3 Despoina Paschalidou2 Boxiao Pan2

Jeong Joon Park2 Mikaela Angelina Uy2 Ioannis Emiris3,1 Yannis Avrithis4
Leonidas Guibas2

1National and Kapodistrian University of Athens 2Stanford University
3Athena RC, Greece 4Institute of Advanced Research in Artificial Intelligence (IARAI)

https://ktertikas.github.io/part_nerf

https://ktertikas.github.io/part_nerf


Compositional Representations for Object Synthesis

Shape editing involves making local changes on the shape and appearance of different
regions of an object. For example, we want to be able to:

Apply rigid and non rigid transformations on specific parts of the object.
Change the appearance of a specific part of a 3D object.
Add or remove a part.
Combine parts from different objects.

2



Compositional Representations for Object Synthesis

Shape editing involves making local changes on the shape and appearance of different
regions of an object. For example, we want to be able to:

◦ Apply rigid and non rigid transformations on specific parts of the object.

Change the appearance of a specific part of a 3D object.
Add or remove a part.
Combine parts from different objects.

2



Compositional Representations for Object Synthesis

Shape editing involves making local changes on the shape and appearance of different
regions of an object. For example, we want to be able to:

◦ Apply rigid and non rigid transformations on specific parts of the object.

Change the appearance of a specific part of a 3D object.
Add or remove a part.
Combine parts from different objects.

2



Compositional Representations for Object Synthesis

Shape editing involves making local changes on the shape and appearance of different
regions of an object. For example, we want to be able to:

◦ Apply rigid and non rigid transformations on specific parts of the object.
◦ Change the appearance of a specific part of a 3D object.

Add or remove a part.
Combine parts from different objects.

2



Compositional Representations for Object Synthesis

Shape editing involves making local changes on the shape and appearance of different
regions of an object. For example, we want to be able to:

◦ Apply rigid and non rigid transformations on specific parts of the object.
◦ Change the appearance of a specific part of a 3D object.
◦ Add or remove a part.

Combine parts from different objects.

2



Compositional Representations for Object Synthesis

Shape editing involves making local changes on the shape and appearance of different
regions of an object. For example, we want to be able to:

◦ Apply rigid and non rigid transformations on specific parts of the object.
◦ Change the appearance of a specific part of a 3D object.
◦ Add or remove a part.
◦ Combine parts from different objects.

2



Compositional Representations for Object Synthesis

Shape editing involves making local changes on the shape and appearance of different
regions of an object. For example, we want to be able to:

◦ Apply rigid and non rigid transformations on specific parts of the object.
◦ Change the appearance of a specific part of a 3D object.
◦ Add or remove a part.
◦ Combine parts from different objects.

We can specify what object regions to edit through parts.

2



Generative Models for 3D Object Synthesis

Part-based Generative Models

3



Generative Models for 3D Object Synthesis

Part-based Generative Models

✓ Explicit part-level control
Require 3D supervision

Cannot change the appearance of an
object

3



Generative Models for 3D Object Synthesis

Part-based Generative Models

✓ Explicit part-level control
Require 3D supervision

Cannot change the appearance of an
object

NeRF-based Generative Models

3



Generative Models for 3D Object Synthesis

Part-based Generative Models

✓ Explicit part-level control
Require 3D supervision

Cannot change the appearance of an
object

NeRF-based Generative Models

✓ Can generate high quality 3D meshes
✓ Require 2D supervision during training

No explicit part-level control

3



4

Can we learn a part-aware generative model of 3D objects
capable of performing local edits

on the shape and appearance of the generated 3D object?



4

Can we learn a part-aware generative model of 3D objects
capable of performing local edits

on the shape and appearance of the generated 3D object?

Bonus: We want our model to be trained only from posed
images!!!



Key Idea: Enable local control through parts

We represent each object using M parts, where each part is parameterized as a NeRF.
Each part is equipped with:

1. an affine transformation Tm x Rm x tm that maps a 3D point x to the local
coordinate system of the part, where tm is the translation vector and
Rm SO is the rotation matrix

2. a scale vector sm , representing the spatial extent of each part
3. two latent codes: shape zs

m
Ls and texture zt

m
Lt that control and shape and

the appearance of each part.

5



Key Idea: Enable local control through parts

We represent each object using M parts, where each part is parameterized as a NeRF.
Each part is equipped with:

1. an affine transformation Tm(x) = Rm(x + tm) that maps a 3D point x to the local
coordinate system of the part, where tm ∈ R

3 is the translation vector and
Rm ∈ SO(3) is the rotation matrix

2. a scale vector sm , representing the spatial extent of each part
3. two latent codes: shape zs

m
Ls and texture zt

m
Lt that control and shape and

the appearance of each part.

5



Key Idea: Enable local control through parts

We represent each object using M parts, where each part is parameterized as a NeRF.
Each part is equipped with:

1. an affine transformation Tm(x) = Rm(x + tm) that maps a 3D point x to the local
coordinate system of the part, where tm ∈ R

3 is the translation vector and
Rm ∈ SO(3) is the rotation matrix

2. a scale vector sm ∈ R
3, representing the spatial extent of each part

3. two latent codes: shape zs
m

Ls and texture zt
m

Lt that control and shape and
the appearance of each part.

5



Key Idea: Enable local control through parts

We represent each object using M parts, where each part is parameterized as a NeRF.
Each part is equipped with:

1. an affine transformation Tm(x) = Rm(x + tm) that maps a 3D point x to the local
coordinate system of the part, where tm ∈ R

3 is the translation vector and
Rm ∈ SO(3) is the rotation matrix

2. a scale vector sm ∈ R
3, representing the spatial extent of each part

3. two latent codes: shape zs
m ∈ R

Ls and texture zt
m ∈ R

Lt that control and shape and
the appearance of each part.

5



Part Representation

We employ two networks: a color network cθ and an occupancy network oθ to predict the
color and the occupancy value respectively.

6



Part Representation

We employ two networks: a color network cθ and an occupancy network oθ to predict the
color and the occupancy value respectively.

To enforce that each part only captures continuous regions of the object, we multiply its
occupancy function with the occupancy function of an axis-aligned 3D ellipsoid

hm
θ (x) = om

θ (x)gm
θ (x),

where gm
θ
(x) = g(Tm(x), sm) is the occupancy function of the m-th ellipsoid.

6



Part Representation

We employ two networks: a color network cθ and an occupancy network oθ to predict the
color and the occupancy value respectively.

To enforce that each part only captures continuous regions of the object, we multiply its
occupancy function with the occupancy function of an axis-aligned 3D ellipsoid

hm
θ (x) = om

θ (x)gm
θ (x),

where gm
θ
(x) = g(Tm(x)Tm(x), sm) is the occupancy function of the m-th ellipsoid.Tm(x)

6



Part Rendering

We employ two networks: a color network cθ and an occupancy network oθ to predict the
color and the occupancy value respectively.

Instead of predicting volume densities, we predict occupancy values and the rendering
equation of the m-th part becomes:

Ĉm(r) =
N∑

i=1

hm
θ (xr

i )
∏

j<i
(1− hm

θ (xr
i )) cm

θ (xr
i , dr)

7



Part Rendering

We employ two networks: a color network cθ and an occupancy network oθ to predict the
color and the occupancy value respectively.

Instead of predicting volume densities, we predict occupancy values and the rendering
equation of the m-th part becomes:

Ĉm(r) =
N∑

i=1

hm
θ (xr

i )
∏

j<i
(1− hm

θ (xr
i )) cm

θ (xr
i , dr)

where hm
θ
(xr

i ) is the occupancy value at point xr
i and cm

θ
(xr

i , dr) its color.

7



Hard Assignment between Rays and Parts

Given the ordered set of points Xr sampled along ray r, we define a hard assignment
between rays and parts, by associating a ray with the first part it intersects.

8



Hard Assignment between Rays and Parts

Given the ordered set of points Xr sampled along ray r, we define a hard assignment
between rays and parts, by associating a ray with the first part it intersects.

ψr(m)
︸ ︷︷ ︸

Index of the first point
inside each part

intersecting with each ray

= min {i ∈ {1, . . . ,N} : hm
θ (xr

i ) ≥ τ}

8



Hard Assignment between Rays and Parts

Given the ordered set of points Xr sampled along ray r, we define a hard assignment
between rays and parts, by associating a ray with the first part it intersects.

We define the set of rays Rm associated with the m-th part, as the set of rays that first
intersect with it, namely:

Rm
︸︷︷︸

Set of rays
assigned to partm

=
{

r ∈ R : m = argmin
k∈{0...M}

ψr(k)
}

.

8



Hard Assignment between Rays and Parts

Given the ordered set of points Xr sampled along ray r, we define a hard assignment
between rays and parts, by associating a ray with the first part it intersects.

The rendering equation for the entire object using M NeRFs becomes

Ĉ(r) =
M∑

m=1

1r∈Rm Ĉm(r).

8



Object Generation

We are given a collection of posed 2D images of objects in a semantic class, each
accompanied by an object mask. The latter is a binary image indicating whether each
pixel is inside the object or not.

Decomposition Network: Maps zs and zt to M latent codes that control the
per-part shape and texture.
Structure Network: Predicts the pose and the scale for each part m.
Neural Rendering Network: Renders a 2D image using M locally defined NeRFs.

9



Object Generation

We are given a collection of posed 2D images of objects in a semantic class, each
accompanied by an object mask. The latter is a binary image indicating whether each
pixel is inside the object or not.

We implement our generative model as an auto-decoder that consists of:

Decomposition Network: Maps zs and zt to M latent codes that control the
per-part shape and texture.
Structure Network: Predicts the pose and the scale for each part m.
Neural Rendering Network: Renders a 2D image using M locally defined NeRFs.

9



Object Generation

We are given a collection of posed 2D images of objects in a semantic class, each
accompanied by an object mask. The latter is a binary image indicating whether each
pixel is inside the object or not.

We implement our generative model as an auto-decoder that consists of:
◦ Decomposition Network: Maps zs and zt to M latent codes that control the

per-part shape and texture.

Structure Network: Predicts the pose and the scale for each part m.
Neural Rendering Network: Renders a 2D image using M locally defined NeRFs.

9



Object Generation

We are given a collection of posed 2D images of objects in a semantic class, each
accompanied by an object mask. The latter is a binary image indicating whether each
pixel is inside the object or not.

We implement our generative model as an auto-decoder that consists of:
◦ Decomposition Network: Maps zs and zt to M latent codes that control the

per-part shape and texture.
◦ Structure Network: Predicts the pose and the scale for each part m.

Neural Rendering Network: Renders a 2D image using M locally defined NeRFs.

9



Object Generation

We are given a collection of posed 2D images of objects in a semantic class, each
accompanied by an object mask. The latter is a binary image indicating whether each
pixel is inside the object or not.

We implement our generative model as an auto-decoder that consists of:
◦ Decomposition Network: Maps zs and zt to M latent codes that control the

per-part shape and texture.
◦ Structure Network: Predicts the pose and the scale for each part m.

Neural Rendering Network: Renders a 2D image using M locally defined NeRFs.

9



Object Generation

We are given a collection of posed 2D images of objects in a semantic class, each
accompanied by an object mask. The latter is a binary image indicating whether each
pixel is inside the object or not.

We implement our generative model as an auto-decoder that consists of:
◦ Decomposition Network: Maps zs and zt to M latent codes that control the

per-part shape and texture.
◦ Structure Network: Predicts the pose and the scale for each part m.

Neural Rendering Network: Renders a 2D image using M locally defined NeRFs.

9



Object Generation

We are given a collection of posed 2D images of objects in a semantic class, each
accompanied by an object mask. The latter is a binary image indicating whether each
pixel is inside the object or not.

We implement our generative model as an auto-decoder that consists of:
◦ Decomposition Network: Maps zs and zt to M latent codes that control the

per-part shape and texture.
◦ Structure Network: Predicts the pose and the scale for each part m.
◦ Neural Rendering Network: Renders a 2D image using M locally defined NeRFs.

9



Object Generation

We are given a collection of posed 2D images of objects in a semantic class, each
accompanied by an object mask. The latter is a binary image indicating whether each
pixel is inside the object or not.

We implement our generative model as an auto-decoder that consists of:
◦ Decomposition Network: Maps zs and zt to M latent codes that control the

per-part shape and texture.
◦ Structure Network: Predicts the pose and the scale for each part m.
◦ Neural Rendering Network: Renders a 2D image using M locally defined NeRFs.

9



Object Generation

We are given a collection of posed 2D images of objects in a semantic class, each
accompanied by an object mask. The latter is a binary image indicating whether each
pixel is inside the object or not.

We implement our generative model as an auto-decoder that consists of:
◦ Decomposition Network: Maps zs and zt to M latent codes that control the

per-part shape and texture.
◦ Structure Network: Predicts the pose and the scale for each part m.
◦ Neural Rendering Network: Renders a 2D image using M locally defined NeRFs.

9



Object Generation

We are given a collection of posed 2D images of objects in a semantic class, each
accompanied by an object mask. The latter is a binary image indicating whether each
pixel is inside the object or not.

We implement our generative model as an auto-decoder that consists of:
◦ Decomposition Network: Maps zs and zt to M latent codes that control the

per-part shape and texture.
◦ Structure Network: Predicts the pose and the scale for each part m.
◦ Neural Rendering Network: Renders a 2D image using M locally defined NeRFs.

9



Optimization Objective

Our optimization objective L is the sum over six terms combined with two regularizers on
the shape and texture embeddings zs, zt, namely

L = Lrgb(R) + Lmask(R) + Locc(R) + Lcov(R) + Loverlap(R) + Lcontrol + ∥zs∥
2
+

∥
∥zt∥∥

2
.

Reconstruction Loss: The rendered and the observed images should match.
Mask Loss: The rendered and the observed object masks should match.
Occupancy Loss: The generated shape should not occupy empty space.
Coverage Loss: Prevent degenerate part arrangements.
Overlapping Loss: Prevent overlapping parts.
Control Loss: Ensure uniform control across the shape.

10



Optimization Objective

Our optimization objective L is the sum over six terms combined with two regularizers on
the shape and texture embeddings zs, zt, namely

L = Lrgb(R) + Lmask(R) + Locc(R) + Lcov(R) + Loverlap(R) + Lcontrol + ∥zs∥
2
+

∥
∥zt∥∥

2
.

As supervision, we use the observed RGB color C(r) ∈ R
3 and the object mask

I(r) ∈ {0, 1} for each ray r ∈ R. We also associate r with a binary label ℓr = I(r),
indicating whether a ray r is inside, (ℓr = 1) or outside (ℓr = 0).

Reconstruction Loss: The rendered and the observed images should match.
Mask Loss: The rendered and the observed object masks should match.
Occupancy Loss: The generated shape should not occupy empty space.
Coverage Loss: Prevent degenerate part arrangements.
Overlapping Loss: Prevent overlapping parts.
Control Loss: Ensure uniform control across the shape.

10



Optimization Objective

Our optimization objective L is the sum over six terms combined with two regularizers on
the shape and texture embeddings zs, zt, namely

L = Lrgb(R) + Lmask(R) + Locc(R) + Lcov(R) + Loverlap(R) + Lcontrol + ∥zs∥
2
+

∥
∥zt∥∥

2
.

As supervision, we use the observed RGB color C(r) ∈ R
3 and the object mask

I(r) ∈ {0, 1} for each ray r ∈ R. We also associate r with a binary label ℓr = I(r),
indicating whether a ray r is inside, (ℓr = 1) or outside (ℓr = 0).

◦ Reconstruction Loss: The rendered and the observed images should match.

Mask Loss: The rendered and the observed object masks should match.
Occupancy Loss: The generated shape should not occupy empty space.
Coverage Loss: Prevent degenerate part arrangements.
Overlapping Loss: Prevent overlapping parts.
Control Loss: Ensure uniform control across the shape.

10



Optimization Objective

Our optimization objective L is the sum over six terms combined with two regularizers on
the shape and texture embeddings zs, zt, namely

L = Lrgb(R) + Lmask(R) + Locc(R) + Lcov(R) + Loverlap(R) + Lcontrol + ∥zs∥
2
+

∥
∥zt∥∥

2
.

As supervision, we use the observed RGB color C(r) ∈ R
3 and the object mask

I(r) ∈ {0, 1} for each ray r ∈ R. We also associate r with a binary label ℓr = I(r),
indicating whether a ray r is inside, (ℓr = 1) or outside (ℓr = 0).

◦ Reconstruction Loss: The rendered and the observed images should match.
◦ Mask Loss: The rendered and the observed object masks should match.

Occupancy Loss: The generated shape should not occupy empty space.
Coverage Loss: Prevent degenerate part arrangements.
Overlapping Loss: Prevent overlapping parts.
Control Loss: Ensure uniform control across the shape.

10



Optimization Objective

Our optimization objective L is the sum over six terms combined with two regularizers on
the shape and texture embeddings zs, zt, namely

L = Lrgb(R) + Lmask(R) + Locc(R) + Lcov(R) + Loverlap(R) + Lcontrol + ∥zs∥
2
+

∥
∥zt∥∥

2
.

As supervision, we use the observed RGB color C(r) ∈ R
3 and the object mask

I(r) ∈ {0, 1} for each ray r ∈ R. We also associate r with a binary label ℓr = I(r),
indicating whether a ray r is inside, (ℓr = 1) or outside (ℓr = 0).

◦ Reconstruction Loss: The rendered and the observed images should match.
◦ Mask Loss: The rendered and the observed object masks should match.
◦ Occupancy Loss: The generated shape should not occupy empty space.

Coverage Loss: Prevent degenerate part arrangements.
Overlapping Loss: Prevent overlapping parts.
Control Loss: Ensure uniform control across the shape.

10



Optimization Objective

Our optimization objective L is the sum over six terms combined with two regularizers on
the shape and texture embeddings zs, zt, namely

L = Lrgb(R) + Lmask(R) + Locc(R) + Lcov(R) + Loverlap(R) + Lcontrol + ∥zs∥
2
+

∥
∥zt∥∥

2
.

As supervision, we use the observed RGB color C(r) ∈ R
3 and the object mask

I(r) ∈ {0, 1} for each ray r ∈ R. We also associate r with a binary label ℓr = I(r),
indicating whether a ray r is inside, (ℓr = 1) or outside (ℓr = 0).

◦ Reconstruction Loss: The rendered and the observed images should match.
◦ Mask Loss: The rendered and the observed object masks should match.
◦ Occupancy Loss: The generated shape should not occupy empty space.
◦ Coverage Loss: Prevent degenerate part arrangements.

Overlapping Loss: Prevent overlapping parts.
Control Loss: Ensure uniform control across the shape.

10



Optimization Objective

Our optimization objective L is the sum over six terms combined with two regularizers on
the shape and texture embeddings zs, zt, namely

L = Lrgb(R) + Lmask(R) + Locc(R) + Lcov(R) + Loverlap(R) + Lcontrol + ∥zs∥
2
+

∥
∥zt∥∥

2
.

As supervision, we use the observed RGB color C(r) ∈ R
3 and the object mask

I(r) ∈ {0, 1} for each ray r ∈ R. We also associate r with a binary label ℓr = I(r),
indicating whether a ray r is inside, (ℓr = 1) or outside (ℓr = 0).

◦ Reconstruction Loss: The rendered and the observed images should match.
◦ Mask Loss: The rendered and the observed object masks should match.
◦ Occupancy Loss: The generated shape should not occupy empty space.
◦ Coverage Loss: Prevent degenerate part arrangements.
◦ Overlapping Loss: Prevent overlapping parts.

Control Loss: Ensure uniform control across the shape.

10



Optimization Objective

Our optimization objective L is the sum over six terms combined with two regularizers on
the shape and texture embeddings zs, zt, namely

L = Lrgb(R) + Lmask(R) + Locc(R) + Lcov(R) + Loverlap(R) + Lcontrol + ∥zs∥
2
+

∥
∥zt∥∥

2
.

As supervision, we use the observed RGB color C(r) ∈ R
3 and the object mask

I(r) ∈ {0, 1} for each ray r ∈ R. We also associate r with a binary label ℓr = I(r),
indicating whether a ray r is inside, (ℓr = 1) or outside (ℓr = 0).

◦ Reconstruction Loss: The rendered and the observed images should match.
◦ Mask Loss: The rendered and the observed object masks should match.
◦ Occupancy Loss: The generated shape should not occupy empty space.
◦ Coverage Loss: Prevent degenerate part arrangements.
◦ Overlapping Loss: Prevent overlapping parts.
◦ Control Loss: Ensure uniform control across the shape.

10



How well does it work?

11



Scene-Specific Editing

No Editing

12



Scene-Specific Editing

No Editing Rotation

12



Scene-Specific Editing

No Editing Rotation Translation

During all editing operations, only a specific parts of the object changes, while the rest
do not change. 12



Scene-Specific Editing

No Editing Scaling Color

During all editing operations, only a specific parts of the object changes, while the rest
do not change. 13



Impact of Hard Ray-Part Assignment

No Editing Rotation Translation Scaling Color

14



Impact of Hard Ray-Part Assignment

No Editing Rotation Translation Scaling Color

The hard ray-part assignment enforces that the color of a ray is determined by a single
NeRF/part, hence transforming one part does not alter the other parts.

14



Shape Synthesis

15



Shape Interpolations

16



Shape Interpolations

16



Shape Interpolations

16



Part Interpolation

Shape 1 Shape 2 Shape Code Interpolation Texture Code Interpolation

17



Shape Mixing

Shape 1 Shape 2 Geometry Mixing Texture Mixing Combined

18



Shape Mixing

Shape 1 Shape 2 Shape 3 Geometry Mixing

Texture 1 Texture 2 Texture 3 Texture Mixing

19



ShapeNet Comparison - Chairs

GET3D Pi-GAN GRAF EG3D Ours

5

10

15

20

25

30

C
O
V
-C

D
(%

,
↑
)

3.72

6.65 6.8

4.72 4.42

GET3D Pi-GAN GRAF EG3D Ours

10

20

30

40

50

60

70

80

M
M
D
-C

D
(↓
)

69.91

39.65 39.28

50.14

67.2

Differentiable Rendering Volumetric Rendering Ours

20



ShapeNet Comparison - Motorbikes

GET3D Pi-GAN GRAF EG3D Ours

5

10

15

20

25

C
O
V
-C

D
(%

,
↑
)

1.72

21.8

2.4 2.21
0.68

GET3D Pi-GAN GRAF EG3D Ours
0

20

40

60

80

100

M
M
D
-C

D
(↓
)

67.12

6.85

50.68

34.25

56.06

Differentiable Rendering Volumetric Rendering Ours

21



ShapeNet Comparison - Cars

GET3D Pi-GAN GRAF EG3D Ours

5

10

15

20

25

30

C
O
V
-C

D
(%

,
↑
)

0.71

25.54

10.63

0.72
1.74

GET3D Pi-GAN GRAF EG3D Ours
0

20

40

60

80

100

M
M
D
-C

D
(↓
)

58.39

0.55 1.57

49.52

21.1

Differentiable Rendering Volumetric Rendering Ours

22



ShapeNet Comparison to Part-based Methods

23



ShapeNet Comparison - Part-based Methods

DualSDF SPAGHETTI Ours

2

4

6

8

10

12

14

M
M
D
-C

D
(↓
)

1.37

4.2

2.4

DualSDF SPAGHETTI Ours

2

4

6

8

10

12

14

M
M
D
-C

D
(↓
)

4.48

12.3

5.9

DualSDF SPAGHETTI Ours

2

4

6

8

10

12

14

M
M
D
-C

D
(↓
)

5.07

10.4

6.01

Airplanes Tables Chairs

24



ShapeNet Comparison - Part-based Methods

DualSDF SPAGHETTI Ours

2

4

6

8

10

12

14

M
M
D
-C

D
(↓
)

1.37

4.2

2.4

DualSDF SPAGHETTI Ours

2

4

6

8

10

12

14

M
M
D
-C

D
(↓
)

4.48

12.3

5.9

DualSDF SPAGHETTI Ours

2

4

6

8

10

12

14

M
M
D
-C

D
(↓
)

5.07

10.4

6.01

DualSDF SPAGHETTI Ours

10

20

30

40

50

60

C
O
V
-C

D
(%

,
↑
) 37.9

25.0

35.0

DualSDF SPAGHETTI Ours

10

20

30

40

50

60

C
O
V
-C

D
(%

,
↑
)

40.6

36.3

47.8

DualSDF SPAGHETTI Ours

10

20

30

40

50

60

C
O
V
-C

D
(%

,
↑
)

58.0

32.6

50.8

Airplanes Tables Chairs
24



Summary and Limitations

◦ We introduced the first part-aware generative model that parametrizes parts as
NeRFs.

As our model considers the decomposition of objects into parts, it enables intuitive
part-level control and several editing operations not previously possible.
Our model is trained without explicit 3D supervision, using only posed images and
object masks.

25



Summary and Limitations

◦ We introduced the first part-aware generative model that parametrizes parts as
NeRFs.

◦ As our model considers the decomposition of objects into parts, it enables intuitive
part-level control and several editing operations not previously possible.

Our model is trained without explicit 3D supervision, using only posed images and
object masks.

25



Summary and Limitations

◦ We introduced the first part-aware generative model that parametrizes parts as
NeRFs.

◦ As our model considers the decomposition of objects into parts, it enables intuitive
part-level control and several editing operations not previously possible.

◦ Our model is trained without explicit 3D supervision, using only posed images and
object masks.

25



Summary and Limitations

◦ We introduced the first part-aware generative model that parametrizes parts as
NeRFs.

◦ As our model considers the decomposition of objects into parts, it enables intuitive
part-level control and several editing operations not previously possible.

◦ Our model is trained without explicit 3D supervision, using only posed images and
object masks.

Limitations:
◦ Considering GAN losses or triplane representations could further improve the quality

of our generated textures.

The generated parts are not necessarily interpretable.

25



Summary and Limitations

◦ We introduced the first part-aware generative model that parametrizes parts as
NeRFs.

◦ As our model considers the decomposition of objects into parts, it enables intuitive
part-level control and several editing operations not previously possible.

◦ Our model is trained without explicit 3D supervision, using only posed images and
object masks.

Limitations:
◦ Considering GAN losses or triplane representations could further improve the quality

of our generated textures.
◦ The generated parts are not necessarily interpretable.

25



Thank you for your attention!

26


