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Motivation
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Can we learn a generative model of object arrangements
trained for scene synthesis that can also perform a number of

interactive scenarios with versatile user input?
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Existing scene synthesis methods
impose unnatural constraints on the scene generation process
because they represent scenes as ordered sequences of objects.
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4



Existing scene synthesis methods
impose unnatural constraints on the scene generation process
because they represent scenes as ordered sequences of objects.

FastSynth, Ritchie et al. CVPR 2019 SceneFormer, Wang et al. ARXIV 2020

We pose scene synthesis as an unordered set generation problem.
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Scene Parametrization

A scene comprises an unordered set of M objects O = {oj}M
j=1 and its floor shape F.
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A scene comprises an unordered set of M objects O = {oj}M
j=1 and its floor shape F.
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category, size, orientation and location.

pθ(oj | o<j,F)︸ ︷︷ ︸
Probability of generating

j-th object

= pθ(cj|o<j,F)pθ(tj|cj, o<j,F)pθ(rj|cj, tj, o<j,F)pθ(sj|cj, tj, rj, o<j,F)
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Scene Parametrization

A scene comprises an unordered set of M objects O = {oj}M
j=1 and its floor shape F.

The likelihood of generating a scene with any order is:

pθ(O|F)︸ ︷︷ ︸
Probability of generating O

with any order

=
∑

Ô∈π(O)

∏
j∈Ô

pθ(oj | o<j,F)

︸ ︷︷ ︸
Probability of generating O

with order Ô

where π(O) is a a permutation function that computes the set of permutations of all
objects O in the scene.
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Scene Parametrization

A scene comprises an unordered set of M objects O = {oj}M
j=1 and its floor shape F.

The likelihood of generating a scene with all orders is:

p̂θ(O|F)︸ ︷︷ ︸
Probability of generating O

with all orders

=
∏

Ô∈π(O)

∏
j∈Ô

pθ(oj | o<j,F)

︸ ︷︷ ︸
Probability of generating O

with order Ô

ATISS is trained to maximize the log-likelihood of all possible permutations of object
arrangements in a collection of scenes.
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Scene Parametrization

A scene comprises an unordered set of M objects O = {oj}M
j=1 and its floor shape F.

The log-likelihood of generating a scene with all orders is:

log p̂θ(O|F)︸ ︷︷ ︸
Log-likelihood of generating O

with all orders

=
∑

Ô∈π(O)

∑
j∈Ô

log pθ(oj | o<j,F)

︸ ︷︷ ︸
Probability of generating O

with order Ô

ATISS is trained to maximize the log-likelihood of all possible permutations of object
arrangements in a collection of scenes.
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Scene Generation

◦ Layout encoder: Computes a global feature representation for the floor.
◦ Structure encoder: Maps the j-th object to a per-object context embedding Cj.
◦ Transformer encoder: Takes F, {Cj}M

j=1, q and predicts the features q̂ of the next
object to be added in the scene.

◦ Attribute extractor: Predicts the object attributes of the next object.
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Training Overview

◦ Randomly permute the M objects of a scene.
◦ Randomly select the first T objects to compute the context embedding C.
◦ Conditioned on the C and F, ATISS predicts the attribute distributions of the next

object.
◦ ATISS is trained to maximize the log likelihood of the T + 1 object from the

permuted set of objects.
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How well does it work?



Scene Synthesis
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Scene Synthesis

FastSynth SceneFormer Ours
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Scene Synthesis
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Scene Synthesis
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Generalization Beyond Training Data

Scene Layout FastSynth SceneFormer Ours
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Scene Completion
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Scene Completion

FastSynth and SceneFormer can only generate objects in the order they were trained with.
As a result, starting from partial scenes with less common objects, both models fail to
generate plausible object arrangements.

Partial Scene FastSynth SceneFormer Ours+Order Ours
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Objects Suggestion

A user specifies a region of acceptable positions to place an object, marked as a red box
and our model suggests suitable objects to be placed at this location. To perform this
task, we compute the likelihood of an object conditioned on an arbitrary scene.
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Failure Cases Correction

Our model identifies and corrects unnatural object arrangements in a scene. To identify
such objects, our model computes the likelihood of each object conditioned on the other
objects in the scene and objects with low likelihood are identified as problematic. For
these objects a new location is sampled.
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Generation Time
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◦ At least 100× faster than the CNN-based FastSynth for all room types.
◦ At least 4× faster than the Transformer-based SceneFormer for all room types.
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Summary

◦ We propose ATISS a novel autoregressive model for unordered set generation.

◦ We demonstrate that our unordered set formulation opens up multiple interactive
applications.

◦ ATISS has fewer parameters, is simpler to implement and train and runs up to 8x
faster than existing methods.

◦ Limitations:

▶ The autoregressive generation of attributes need to follow a specific ordering.
▶ Separate object retrieval module.

17



Summary

◦ We propose ATISS a novel autoregressive model for unordered set generation.
◦ We demonstrate that our unordered set formulation opens up multiple interactive

applications.

◦ ATISS has fewer parameters, is simpler to implement and train and runs up to 8x
faster than existing methods.

◦ Limitations:

▶ The autoregressive generation of attributes need to follow a specific ordering.
▶ Separate object retrieval module.

17



Summary

◦ We propose ATISS a novel autoregressive model for unordered set generation.
◦ We demonstrate that our unordered set formulation opens up multiple interactive

applications.
◦ ATISS has fewer parameters, is simpler to implement and train and runs up to 8x

faster than existing methods.

◦ Limitations:

▶ The autoregressive generation of attributes need to follow a specific ordering.
▶ Separate object retrieval module.

17



Summary

◦ We propose ATISS a novel autoregressive model for unordered set generation.
◦ We demonstrate that our unordered set formulation opens up multiple interactive

applications.
◦ ATISS has fewer parameters, is simpler to implement and train and runs up to 8x

faster than existing methods.
◦ Limitations:

▶ The autoregressive generation of attributes need to follow a specific ordering.
▶ Separate object retrieval module.

17



Summary

◦ We propose ATISS a novel autoregressive model for unordered set generation.
◦ We demonstrate that our unordered set formulation opens up multiple interactive

applications.
◦ ATISS has fewer parameters, is simpler to implement and train and runs up to 8x

faster than existing methods.
◦ Limitations:

▶ The autoregressive generation of attributes need to follow a specific ordering.

▶ Separate object retrieval module.

17



Summary

◦ We propose ATISS a novel autoregressive model for unordered set generation.
◦ We demonstrate that our unordered set formulation opens up multiple interactive

applications.
◦ ATISS has fewer parameters, is simpler to implement and train and runs up to 8x

faster than existing methods.
◦ Limitations:

▶ The autoregressive generation of attributes need to follow a specific ordering.
▶ Separate object retrieval module.

17



Check out our project page for code and additional results!

https://nv-tlabs.github.io/ATISS
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