ATISS: Autoregressive Transformers for Indoor Scene Synthesis

Despoina Paschalidou 1,3,4 Amlan Kar 4,5,6 Maria Shugrina 4 Karsten Kreis 4 Andreas Geiger 1,2,3 Sanja Fidler 4,5,6

Karsten Kreis Andreas Geiger Sanja Fidler Strain Sanja Fidler Stra

Systems Tübingen 2 University of Tübingen 3 Max Planck ETH Center for Learning Systems 4 NVIDIA 5 University of Toronto 6 Vector Institute

https://nv-tlabs.github.io/ATISS/

Motivation

Existing scene synthesis pipelines represent scenes as **ordered sequences of objects**, thus inhibiting practical applications.

Contributions:

- Pose scene synthesis as autoregressive set generation.
- State-of-the-art results on the scene synthesis.
- Enables new interactive applications.
- Renders a new scene up to 8 times faster.

Training Overview

Each scene comprises an unordered set of objects in the scene $\mathcal{O} = \{o_i^i\}_{i=1}^M$ and its floor layout \mathbf{F} .

Each object is represented as a **3D labelled bounding box**, modelled with four random variables that control its category **c**, size **s**, orientation **r** and location **t**.

Our Method

Our key idea is to **pose the scene synthesis task as an unordered set generation problem**. Given a room type and its shape, ATISS generates furniture arrangements by autoregressively placing objects in a **permutation-invariant fashion**.

The object attributes are generated in an autoregressive manner:

$$p_{\theta}(o_j \mid o_{< j}, \mathbf{F}) = p_{\theta}(\mathbf{c}_j \mid o_{< j}, \mathbf{F}) p_{\theta}(\mathbf{t}_j \mid \mathbf{c}_j, o_{< j}, \mathbf{F}) p_{\theta}(\mathbf{r}_j \mid \mathbf{c}_j, \mathbf{t}_j, o_{< j}, \mathbf{F}) p_{\theta}(\mathbf{s}_j \mid \mathbf{c}_j, \mathbf{t}_j, \mathbf{r}_j, o_{< j}, \mathbf{F}).$$

The likelihood of generating a scene with any order is:

$$p_{\theta}(\mathcal{O}|\mathbf{F}) = \sum_{\hat{\mathcal{O}} \in \pi(\mathcal{O})} \prod_{j \in \hat{\mathcal{O}}} p_{\theta}(o_j \mid o_{< j}, \mathbf{F})$$

The likelihood of generating a scene with all possible orders is:

$$\hat{p}_{\theta}(\mathcal{O}|\mathbf{F}) = \prod_{\hat{\mathcal{O}} \in \pi(\mathcal{O})} \prod_{j \in \hat{\mathcal{O}}} p_{\theta}(o_j \mid o_{< j}, \mathbf{F})$$

Scene Synthesis Results

Interactive Applications

Generalization Beyond Training Data

Failures Correction

Objects Suggestion

Object Placement

